156
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Free Convolution Powers Via Roots of Polynomials

References

  • Anshelevich, M. (1999). The linearization of the central limit operator in free probability theory. Probab. Theory Related Fields 115(3): 401–416. doi:10.1007/s004400050243
  • Belinschi, S. T. (2019). Some geometric properties of the subordination function associated to an operatorvalued free convolution semigroup. Complex Anal. Oper. Theory 13: 61–84. doi:10.1007/s11785-017-0688-y
  • Belinschi, S. T., Bercovici, H. (2004). Atoms and regularity for measures in a partially defined free convolution semigroup. Mathematische Zeitschrift 248: 665–674. doi:10.1007/s00209-004-0671-y
  • Belinschi, S. T., Bercovici, H. (2005). Partially defined semigroups relative to multiplicative free convolution. Int. Math. Res. Not. 2: 65–101.
  • Bercovici, H., Voiculescu, D. (1993). Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42: 733–773. doi:10.1512/iumj.1993.42.42033
  • Bercovici, H., Voicolescu, D. (1995). Superconvergence to the central limit and failure of the Cramer theorem for free random variables. Prob. Theory Related Fields 103: 215–222. doi:10.1007/BF01204215
  • Byun, S. S., Lee, J., Reddy, T. R. Zeros of random polynomials and its higher derivatives, arXiv:1801.08974
  • Farmer, D., Rhoades, R. (2005). Differentiation evens out zero spacings. Trans. Amer. Math. Soc. 357(9): 3789–3811.
  • Gauss, C. F. Werke, Band 3, Göttingen 1866, S. 120:112
  • Gimbutas, Z., Marshall, N., Rokhlin, V. (2020). A fast simple algorithm for computing the potential of charges on a line. Appl. Comp. Harm. Anal. 49: 815–830 doi:10.1016/j.acha.2020.06.002
  • Gorin, V., Kleptsyn, V. Universal objects of the infinite beta random matrix theory, arXiv:2009.02006
  • Gorin, V., Marcus, A. (2020). Crystallization of random matrix orbits. Int. Math. Res. Not. (3): 883–913, doi:10.1093/imrn/rny052
  • Granero-Belinchon, R. On a nonlocal differential equation describing roots of polynomials under differentiation, arXiv:1812.00082
  • Hanin, B. (2017). Pairing of zeros and critical points for random polynomials. Ann. Inst. H. Poincaré, Probab. Statist. 53: 1498–1511.
  • Hiai, F., Denes, P. (2000). The Semicircle Law, Free Random Variables and Entropy, Vol. 77, Providence, Rhode Island: American Mathematical Society.
  • Hoskins, J., Steinerberger, S. A semicircle law for derivatives of random polynomials, arXiv:2005.09809
  • Huang, H. W. (2014). Supports of measures in a free additive convolution semigroup. Int. Math. Res. Not. 2015: 4269–4292.
  • Kabluchko, Z. (2015). Critical points of random polynomials with independent identically distributed roots. Proc. Amer. Math. Soc. 143: 695–702. doi:10.1090/S0002-9939-2014-12258-1
  • Kabluchko, Z., Seidel, H. (2019). Distances between zeroes and critical points for random polynomials with i.i.d. zeroes. Electron. J. Probab. 24, paper no. 34, 25 pp. doi:10.1214/19-EJP295
  • Kornik, M., Michaletzky, G. (2016). Wigner matrices, the moments of roots of Hermite polynomials and the semicircle law. J. Approx. Theory 211: 29–41.
  • Lucas, F. (1879). Sur une application de la Mécanique rationnelle à la théorie des équations. in: Comptes Rendus de l’Académie des Sciences 89: S. 224–226
  • Marcus, A. (2016). Polynomial convolutions and (finite) free probability. preprint
  • Marcus, A., Spielman, D., Srivastava, N. Finite free convolutions of polynomials, arXiv:1504.00350
  • Mingo, J. A., Speicher, R. (2017). Free Probability and Random Matrices, Volume 35 of Fields Institute Monographs. New York: Springer/Toronto, ON: Fields Institute for Research in Mathematical Sciences.
  • Nica, A., Speicher, R. (1996). On the multiplication of free N-tuples of noncommutative random variables. Amer. J. Math. 118(4): 799–837.
  • Nica, A., Speicher, R. (2006). Lectures on the Combinatorics of Free Probability, Vol. 13. Cambridge: Cambridge University Press.
  • O’Rourke, S., Williams, N. (2019). Pairing between zeros and critical points of random polynomials with independent roots. Trans. Amer. Math. Soc. 371: 2343–2381 doi:10.1090/tran/7496
  • O’Rourke, S., Williams, N. (2020). On the local pairing behavior of critical points and roots of random polynomials. Electron. J. Probab. 25, paper no. 100, 68pp. doi:10.1214/20-EJP499
  • O’Rourke, S., Reddy, T. R. Sums of random polynomials with independent roots, arXiv:1909.07939
  • O’Rourke, S., Steinerberger, S. A nonlocal transport equation modeling complex roots of polynomials under differentiation, arXiv:1910.12161
  • Pemantle, R., Rivlin, I. (2013). The distribution of the zeroes of the derivative of a random polynomial. In Ilias S. Kotsireas and Eugene V. Zima (Eds), Advances in Combinatorics. Springer-Verlag Berlin Heidelberg; pp. 259–273.
  • Pemantle, R., Subramanian, S. (2017). Zeros of a random analytic function approach perfect spacing under repeated differentiation. Trans. Amer. Math. Soc. 369: 8743–8764. doi:10.1090/tran/6929
  • Polya, G. (1930). Some problems connected with Fourier’s work on transcendental equations. Q. J. Math. 1: 21–34.
  • Ravichandran, M. Principal submatrices, restricted invertibility, and a quantitative Gauss–Lucas theorem, IMRN, to appear
  • Reddy, T. R. (2017). Limiting empirical distribution of zeros and critical points of random polynomials agree in general. Electron. J. Probab. 22, paper no. 74, 18pp. doi:10.1214/17-EJP85
  • Shlyakhtenko, D. (2007). A free analogue of Shannon’s problem on monotonicity of entropy. Adv. Math. 208(2): 824–833.
  • Shlyakhtenko, D., Tao, T. Fractional free convolution powers, arXiv:2009.01882
  • Subramanian, S. (2012). On the distribution of critical points of a polynomial. Electron. Commun. Probab. 17, paper no. 37, 9 pp. doi:10.1214/ECP.v17-2040
  • Steinerberger, S. (2019). A nonlocal transport equation describing roots of polynomials under differentiation. Proc. Amer. Math. Soc. 147: 4733–4744 doi:10.1090/proc/14699
  • Stoyanoff, A. (1926). Sur un Theorem de M. Marcel Riesz, Nouv. Annal. de Math. 1: 97–99.
  • Voiculescu, D. (1986). Addition of certain non-commuting random variables. J. Funct. Anal. 66: 323–346. doi:10.1016/0022-1236(86)90062-5
  • Voiculescu, D. (1993). The analogues of entropy and of Fisher’s information measure in free probability theory I. Comm. Math. Phys. 155:71–92. doi:10.1007/BF02100050
  • Williams, J. (2018). On the Hausdorff continuity of free Levy processes and free convolution semigroups. J. Math. Anal. Appl. 459: 604–613. doi:10.1016/j.jmaa.2016.09.062

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.