412
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

New Representations for all Sporadic Apéry-Like Sequences, With Applications to Congruences

References

  • Apéry, R. (1979). Irrationalité de ζ(2) et ζ(3). Astérisque, 61:11–13.
  • Apéry, R. (1981). Interpolation de fractions continues et irrationalité de certaines constantes. In Mathematics, CTHS: Bull. Sec. Sci., III. Paris: Bib. Nat.; pp. 37–53.
  • Amdeberhan, T., Tauraso, R. (2016). Supercongruences for the Almkvist-Zudilin numbers. Acta Arith. 173(3):255–268.
  • Almkvist, G., van Straten, D., Zudilin, W. Generalizations of Clausen’s formula and algebraic transformations of Calabi-Yau differential equations. Proc. Edinb. Math. Soc. (2), 54(2):273–295. doi:10.1017/S0013091509000959
  • Almkvist, G., Zudilin, W. (2006). Differential equations, mirror maps and zeta values. In Mirror Symmetry. V, Vol. 38 of AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc.; pp. 481–515.
  • Bostan, A., Boukraa, S., Christol, G., Hassani, S., Maillard, J.-M. (2013). Ising n-fold integrals as diagonals of rational functions and integrality of series expansions. J. Phys. A. 46(18):185202, 44.
  • Bostan, A., Boukraa, S., Maillard, J.-M., Weil, J.-A. (2015).Diagonals of rational functions and selected differential Galois groups. J. Phys. A 48(50):504001, 29.
  • Bostan, A., Chyzak, F., van Hoeij, M., Pech, L. (2011/12). Explicit formula for the generating series of diagonal 3D rook paths. Sém. Lothar. Combin. 66:Art. B66a, 27.
  • Beukers, F. (1987). Another congruence for the Apéry numbers. J. Number Theory 25(2):201–210. doi:10.1016/0022-314X(87)90025-4
  • Beukers, F. (1987). Irrationality proofs using modular forms. Astérisque (147/148):271–283, 345. Journées arithmétiques de Besançon (Besançon, 1985).
  • Bostan, A., Lairez, P., Salvy, B. (2017).Multiple binomial sums. J. Symbolic Comput. 80(part 2): 351–386. doi:10.1016/j.jsc.2016.04.002
  • Borwein, J. M., Nuyens, D., Straub, A., Wan, J. (2011). Some arithmetic properties of short random walk integrals. Ramanujan J. 26(1):109–132. doi:10.1007/s11139-011-9325-y
  • Viggo Brun, J., Stubban, O., Fjeldstad, J. E., Tambs Lyche, R., Aubert, K. E., Ljunggren, W., Jacobsthal, E. (1952). On the divisibility of the difference between two binomial coefficients. In Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949. Johan Grundt Tanums Forlag, Oslo; pp. 42–54.
  • Borwein, J. M., Straub, A., Vignat, C. (2016). Densities of short uniform random walks in higher dimensions. J. Math. Anal. Appl., 437(1):668–707.
  • Borwein, J. M., Straub, A., Wan, J. (2013).Three-step and four-step random walk integrals. Exp. Math. 22(1):1–14.
  • Chowla, S., Cowles, J., Cowles, M. (1980). Congruence properties of Apéry numbers. J. Number Theory 12(2):188–190. doi:10.1016/0022-314X(80)90051-7
  • Chan, H. H., Cooper, S., Sica, F. (2010). Congruences satisfied by Apéry-like numbers. Int. J. Number Theory 6(1):89–97. doi:10.1142/S1793042110002879
  • Christol, G. (1984). Diagonales de fractions rationnelles et equations différentielles. In Amice, Y., Christol, G., Robba, P., eds. Study group on ultrametric analysis, 10th year: 1982/83, No. 2, pages Exp. No. 18, 10. Paris: Inst. Henri Poincaré.
  • Christol, G. (1985). Diagonales de fractions rationnelles et équations de Picard-Fuchs. In Amice, Y., Christol, G., Robba, P., eds. Study group on ultrametric analysis, 12th year, 1984/85, No. 1, pages Exp. No. 13, 12. Paris: Secrétariat Math.
  • Chyzak, F. (1997). An extension of Zeilberger’s fast algorithm to general holonomic functions. Vol. 217, pages 115–134. 2000. Formal power series and algebraic combinatorics (Vienna).
  • Cooper, S. (2012). Sporadic sequences, modular forms and new series for 1/π. Ramanujan J. 29(1–3):163–183.
  • Cooper, S. (2017). Ramanujan’s Theta Functions. Cham: Springer.
  • Coster, M. J. (1988). Supercongruences. PhD thesis, University of Leiden.
  • Chan, H. H., Tanigawa, Y., Yang, Y., Zudilin, W. (2011). New analogues of Clausen’s identities arising from the theory of modular forms. Adv. Math. 228(2):1294–1314.
  • Chan, H. H., Zudilin, W. (2010). New representations for Apéry-like sequences. Mathematika 56(1):107–117. doi:10.1112/S0025579309000436
  • Delaygue, É. (2018). Arithmetic properties of Apéry-like numbers. Compos. Math. 154(2):249–274.
  • Deutsch, E., Sagan, B. E. (2006). Congruences for Catalan and Motzkin numbers and related sequences. J. Number Theory, 117(1):191–215. doi:10.1016/j.jnt.2005.06.005
  • Dwork, B. (1969). p-adic cycles. Inst. Hautes Études Sci. Publ. Math. (37):27–115. doi:10.1007/BF02684886
  • Gessel, I. (1982). Some congruences for Apéry numbers. J. Number Theory 14(3):362–368. doi:10.1016/0022-314X(82)90071-3
  • Gorodetsky, O. (2019). q-congruences, with applications to supercongruences and the cyclic sieving phenomenon. Int. J. Number Theory 15(9):1919–1968.
  • Kazandzidis, G. S. (1969). On congruences in number-theory. Bull. Soc. Math. Grèce (N.S.), 10(fasc., fasc. 1):35–40.
  • Kummer, E. E. (1852). Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44:93–146.
  • Lipshitz, L. (1988). The diagonal of a D-finite power series is D-finite. J. Algebra 113(2):373–378. doi:10.1016/0021-8693(88)90166-4
  • Lucas, E. (1988). Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. Soc. Math. Fr. 6:49–54.
  • MacMahon, P. A. (1960). Combinatory analysis. Two volumes (bound as one). New York: Chelsea Publishing Co.
  • McIntosh, R. J. (1992). A generalization of a congruential property of Lucas. Amer. Math. Monthly 99(3):231–238. doi:10.1080/00029890.1992.11995840
  • Mimura, Y. (1983). Congruence properties of Apéry numbers. J. Number Theory 16(1):138–146. doi:10.1016/0022-314X(83)90038-0
  • Moy, R. (2013). Congruences among power series coefficients of modular forms. Int. J. Number Theory 9(6):1447–1474. doi:10.1142/S1793042113500371
  • Malik, A., Straub, A. (2016). Divisibility properties of sporadic Apéry-like numbers. Res. Number Theory 2:Art. 5, 26.
  • Mellit, A., Vlasenko, M. (2016). Dwork’s congruences for the constant terms of powers of a Laurent polynomial. Int. J. Number Theory 12(2):313–321. doi:10.1142/S1793042116500184
  • Osburn, R., Sahu, B. (2011). Congruences via modular forms. Proc. Amer. Math. Soc. 139(7):2375–2381.
  • Osburn, R., Sahu, B. (2011). Supercongruences for Apéry-like numbers. Adv. in Appl. Math. 47(3):631–638.
  • Osburn, R., Sahu, B. (2013). A supercongruence for generalized Domb numbers. Funct. Approx. Comment. Math. 48(part 1):29–36. doi:10.7169/facm/2013.48.1.3
  • Osburn, R., Sahu, B., Straub, A. (2016). Supercongruences for sporadic sequences. Proc. Edinb. Math. Soc. (2), 59(2):503–518.
  • Peters, C., Stienstra, J. (1989). A pencil of K3-surfaces related to Apéry’s recurrence for ζ(3) and Fermi surfaces for potential zero. In Barth, W. P., Lange, H., eds. Arithmetic of Complex Manifolds (Erlangen, 1988), Vol. 1399 of Lecture Notes in Math. Berlin: Springer; pp. 110–127.
  • Robert, A. M. (2000). A Course in p-adic Analysis, Vol. 198 of Graduate Texts in Mathematics. New York: Springer-Verlag.
  • Stienstra, J., Beukers, F. (1985). On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann. 271(2):269–304.
  • Schmidt, A. L. (1995). Legendre transforms and Apéry’s sequences. J. Austral. Math. Soc. Ser. A 58(3):358–375.
  • Sloane, N. J. A. (1996). The on-line encyclopedia of integer sequences. Available at: https://oeis.org.
  • Strehl, V. (1994). Binomial identities—combinatorial and algorithmic aspects. Discret. Math. 136(1–3):309–346. Trends in Discrete Mathematics. doi:10.1016/0012-365X(94)00118-3
  • Straub, A. (2014). Multivariate Apéry numbers and supercongruences of rational functions. Algebra Number Theory 8(8):1985–2007.
  • Samol, K., van Straten, D. (2015). Dwork congruences and reflexive polytopes. Ann. Math. Qué. 39(2):185–203.
  • Straub, A., Zudilin, W. (2015). Positivity of rational functions and their diagonals. J. Approx. Theory 195:57–69. doi:10.1016/j.jat.2014.05.012
  • Verrill, H. A. (1999). Some congruences related to modular forms. Max Planck Institute for Mathematics. Available at: http://www.mpim-bonn.mpg.de/preprints?title=%22Some+congruences+related+to+modular+forms%22
  • Verrill, H. A. (2001). Picard-Fuchs equations of some families of elliptic curves. In Proceedings on Moonshine and related topics (Montréal, QC, 1999), Vol. 30 of CRM Proc. Lecture Notes, Providence, RI: Amer. Math. Soc.; pp. 253–268.
  • Verrill, H. A. (2010).Congruences related to modular forms. Int. J. Number Theory 6(6):1367–1390. doi:10.1142/S1793042110003587
  • Zagier, D. (2009). Integral solutions of Apéry-like recurrence equations. In Harnad, J., Winternitz, P., eds. Groups and Symmetries, Vol. 47 of CRM Proc. Lecture Notes. Providence, RI: Amer. Math. Soc.; pp. 3349–3663.
  • Zagier, D. (2018). The arithmetic and topology of differential equations. In Mehrmann, V., Skutella, M., eds. European Congress of Mathematics. Zürich: Eur. Math. Soc.; pp. 717–776.
  • Zeilberger, D. (1991). The method of creative telescoping. J. Symbolic Comput. 11(3):195–204. doi:10.1016/S0747-7171(08)80044-2