222
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of rolling contact fatigue cracks using the transmitter-receiver eddy current testing under moving conditions

, ORCID Icon, , &
Pages 614-633 | Received 19 Sep 2022, Accepted 28 May 2023, Published online: 06 Jun 2023

References

  • Cannon DF, Edel KO, Grassie SL, et al. Rail defects: an overview. Fatigue Fract Eng Mater Struct. 2003;26(10):865–886. DOI:10.1046/j.1460-2695.2003.00693.x
  • Sadeghi F, Jalalahmadi B, Slack TS, et al. A review of rolling contact fatigue. J Tribol. 2009;131(4):041403. DOI:10.1115/1.3209132
  • Olver AV. The mechanism of rolling contact fatigue: an update proceedings of the institution of mechanical engineers, part J. Journal Of Engineering Tribolo Gy. 2005;219(5):313–330.
  • Clark R. Rail flaw detection: overview and needs for future developments. NDT E Int. 2004;37(2):111–118.
  • Alahakoon S, Sun YQ, Spiryagin M, et al. Rail flaw detection technologies for safer, reliable transportation: a review. J Dyn Syst Meas Control. 2018;140(2):020801. DOI:10.1115/1.4037295
  • Ph Papaelias M, Roberts C, Davis CL. A review on non-destructive evaluation of rails: state-of-the-art and future development proceedings of the institution of mechanical engineers, part F. J Rail Rapid Transit. 2008;222(4):367–384.
  • Kim G, Seo MK, Kim YI, et al. Development of phased array ultrasonic system for detecting rail cracks. Sens Actuators A. 2020;311:112086.
  • Hu P, Wang HT, Tian GY, et al. Wireless localization of spallings in switch-rails with guided waves based on a time–frequency method. IEEE Sens J. 2019;19(23):11050–11062. DOI:10.1109/JSEN.2019.2934159
  • Ge H, Chua Kim Huat D, Koh CG, et al. Guided wave–based rail flaw detection technologies: state-of-the-art review. Struct Health Monit. 2022;21(3):1287–1308. DOI:10.1177/14759217211013110
  • Wang P, Gao YL, Tian GY, et al. Velocity effect analysis of dynamic magnetization in high speed magnetic flux leakage inspection. NDT E Int. 2014;64:7–12.
  • Antipov AG, Markov AA. 3D simulation and experiment on high speed rail MFL inspection. Ndt& E International. 2018;98:177–185.
  • Gao YL, Tian GY, Li KY, et al. Multiple cracks detection and visualization using magnetic flux leakage and eddy current pulsed thermography. Sens Actuators A. 2015;234:269–281.
  • Li QY, Ren SW. A real-time visual inspection system for discrete surface defects of rail heads. IEEE Trans Instrum Meas. 2012;61(8):2189–2199.
  • Liu JB, Huang Y, Zou Q, et al. Learning visual similarity for inspecting defective railway fasteners. IEEE Sensors J. 2019;19(16):6844–6857. DOI:10.1109/JSEN.2019.2911015
  • Peng JP, Tian GY, Wang L, et al. Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization. NDT E Int. 2015;74:72–80.
  • Liu Y, Tian GY, Gao B, et al. Depth quantification of rolling contact fatigue crack using skewness of eddy current pulsed thermography in stationary and scanning modes. NDT E Int. 2022;128:102630.
  • To A, Li ZC, Dixon S. Improved detection of surface defects at sample edges using high-frequency eddy current amplitude and phase measurements. Case Stud NondestrTest Eval. 2022;37(6):795–819.
  • Yuan F, Yu YT, Wang W, et al. A novel probe of DC electromagnetic NDT based on drag effect: design and application in crack characterization of high-speed moving ferromagnetic material. IEEE Trans Instrum Meas. 2021;70:1–10.
  • Piao G, Li JY, Udpa L, et al. Finite-element study of motion-induced eddy current array method for high-speed rail defects detection. IEEE Trans Magn. 2021;57(12):1–10. DOI:10.1109/TMAG.2021.3119267
  • Xu P, Zhu CL, Zeng HM, et al. Rail crack detection and evaluation at high speed based on differential ECT system. Measurement. 2020;166:108152.
  • Xu P, Zeng HM, Qian T, et al. Research on defect detection of high-speed rail based on multi-frequency excitation composite electromagnetic method. Measurement. 2022;187:110351.
  • Yuan F, Yu Y, Liu B, et al. Investigation on velocity effect in pulsed eddy current technique for detection cracks in ferromagnetic material. IEEE Trans Magn. 2020;56(9):1–8. DOI:10.1109/TMAG.2020.3012341
  • Piao GY, Guo JB, Hu TH, et al. A novel pulsed eddy current method for high-speed pipeline inline inspection. Sens Actuators A. 2019;295:244–258.
  • Machado MA, Antin KN, Rosado LS, et al. Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer. Composites. 2019;168:226–235.
  • Koyama K, Hoshikawa H. Influence of speed effect in eddy current nondestructive testing. Case Stud NondestrTest Eval. 1992;7(1–6):73–82.
  • Zhu JZ, Withers PJ, Wu JB, et al. Characterization of rolling contact fatigue cracks in rails by eddy current pulsed thermography. IEEE Trans Ind Inf. 2021;17(4):2307–2315. DOI:10.1109/TII.2020.3003335
  • Shen J, Zhou L, Rowshandel H, et al. Prediction of RCF clustered cracks dimensions using an ACFM sensor and influence of crack length and vertical angle. Case Stud NondestrTest Eval. 2020;35(1):1–18. DOI:10.1080/10589759.2019.1611817
  • Tong ZF, Xie SJ, Chen HE, et al. Quantitative mapping of depth profile of fatigue cracks using eddy current pulsed thermography assisted by PCA and 2D wavelet transformation. Mech Syst Signal Process. 2022;175:109139.
  • Li X, Tian GY, Li KY, et al. Differential ECT probe design and investigation for detection of rolling contact fatigue cracks with different orientations. IEEE Sensors J. 2022;22(12):11615–11625. DOI:10.1109/JSEN.2022.3170598
  • Ona DI, Tian GY, Naqvi SM. Investigation of signal conditioning for Tx-Rx PEC probe at high lift-off using a modified Maxwell’s bridge. IEEE Sensors J. 2019;20(5):2560–2569.
  • Ona DI, Tian GY, Sutthaweekul R, et al. Design and optimisation of mutual inductance based pulsed eddy current probe. Measurement. 2019;144:402–409.
  • Coufal O. Transient and steady current in a series RL circuit. IEEE Access. 2022;10:87745–87753.
  • Krause TW, Mandache C, Lefebvre JHV Diffusion of pulsed eddy currents in thin conducting plates[C]. AIP Conference Proceedings; Golden (Colorado). American Institute of Physics, 2008, 975( 1): 368–375.
  • Gupta P, Sharma KK, Joshi SD. Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition. Healthc Technol Lett. 2015;2(6):164–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.