112
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Conjugated microporous polymers promote photoswitching in the solid-state

, , , , , , & show all
Pages 289-304 | Received 18 Dec 2023, Accepted 13 Jan 2024, Published online: 09 Apr 2024

References

  • Rwei, A. Y.; Wang, W.; Kohane, D. S. Photoresponsive Nanoparticles for Drug Delivery. Nano Today 2015, 10, 451–467. DOI: 10.1016/j.nantod.2015.06.004.
  • Mao, L.; Wang, Z.; Duan, Y.; Xiong, C.; He, C.; Deng, X.; Zheng, Y.; Wang, D. Designing of Rewritable Paper by Hydrochromic Donor-Acceptor Stenhouse Adducts. ACS Nano 2021, 15, 10384–10392. DOI: 10.1021/acsnano.1c02629.
  • Li, Z.; Liu, X.; Wang, G.; Li, B.; Chen, H.; Li, H.; Zhao, Y. Photoresponsive Supramolecular Coordination Polyelectrolyte as Smart Anticounterfeiting Inks. Nat. Commun. 2021, 12, 1363. DOI: 10.1038/s41467-021-21677-4.
  • Orgiu, E.; Samorì, P. 25th Anniversary Article: Organic Electronics Marries Photochromism: Generation of Multifunctional Interfaces, Materials, and Devices. Adv. Mater. 2014, 26, 1827–1845. DOI: 10.1002/adma.201304695.
  • Yao, Z.-F.; Wang, J.-Y.; Pei, J. Control of π-π Stacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals. Cryst. Growth Des. 2017, 18, 7–15. DOI: 10.1021/acs.cgd.7b01385.
  • Hartley, G. S. The Cis-Form of Azobenzene. Nature 1937, 140, 281–281. DOI: 10.1038/140281a0.
  • Fischer, E.; Hirshberg, Y. Formation of Coloured Forms of Spirans by Low-Temperature Irradiation. J. Chem. Soc. 1952, 11, 4522–4524.
  • Irie, M.; Mohri, M. Thermally Irreversible Photochromic Systems. Reversible Photocyclization of Diarylethene Derivatives. J. Org. Chem. 1988, 53, 803–808. DOI: 10.1246/bcsj.64.789.
  • Helmy, S.; Oh, S.; Leibfarth, F. A.; Hawker, C. J.; Read de Alaniz, J. Design and Synthesis of Donor-Acceptor Stenhouse Adducts: A Visible Light Photoswitch Derived from Furfural. J. Org. Chem. 2014, 79, 11316–11329. DOI: 10.1021/jo502206g.
  • Varghese, S.; Das, S. Role of Molecular Packing in Determining Solid-State Optical Properties of π-Conjugated Materials. J. Phys. Chem. Lett. 2011, 2, 863–873. DOI: 10.1021/jz200099p.
  • Wuttke, S. Introduction to Reticular Chemistry. Metal-Organic Frameworks and Covalent Organic Frameworks by Omar M. Yaghi, Markus J. Kalmutzki, and Christian S. Diercks. Angew. Chem. Int. Ed. 2019, 58, 14024–14024. DOI: 10.1002/anie.201906230.
  • Daglar, H.; Gulbalkan, H. C.; Avci, G.; Aksu, G. O.; Altundal, O. F.; Altintas, C.; Erucar, I.; Keskin, S. Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs. Angew. Chem. Int. Ed. Engl. 2021, 60, 7828–7837. DOI: 10.1002/anie.202015250.
  • Wu, C. D.; Zhao, M. Incorporation of Molecular Catalysts in Metal-Organic Frameworks for Highly Efficient Heterogeneous Catalysis. Adv. Mater. 2017, 29, 1605446. DOI: 10.1002/adma.201605446.
  • Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery. Biomaterials 2020, 230, 119619. DOI: 10.1016/j.biomaterials.2019.119619.
  • Schwartz, H. A.; Olthof, S.; Schaniel, D.; Meerholz, K.; Ruschewitz, U. Solution-Like Behavior of Photoswitchable Spiropyrans Embedded in Metal-Organic Frameworks. Inorg. Chem. 2017, 56, 13100–13110. DOI: 10.1021/acs.inorgchem.7b01908.
  • Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics Modulation in Photoswitchable Metal-Organic Frameworks. Chem. Rev. 2019, 120, 8790–8813. DOI: 10.1021/acs.chemrev.9b00350.
  • Lerch, M. M.; Di Donato, M.; Laurent, A. D.; Medved, M.; Iagatti, A.; Bussotti, L.; Lapini, A.; Buma, W. J.; Foggi, P.; Szymański, W.; Feringa, B. L. Solvent Effects on the Actinic Step of Donor-Acceptor Stenhouse Adduct Photoswitching. Angew. Chem. Int. Ed. Engl. 2018, 57, 8063–8068. DOI: 10.1002/anie.201803058.
  • Kitagawa, D.; Kobatake, S. Strategy for Molecular Design of Photochromic Diarylethenes Having Thermal Functionality. Chem. Rec. 2016, 16, 2005–2015. DOI: 10.1002/tcr.201600060.
  • Hamon, F.; Djedaini-Pilard, F.; Barbot, F.; Len, C. Azobenzenes-Synthesis and Carbohydrate Applications. Tetrahedron 2009, 65, 10105–10123. DOI: 10.1016/j.tet.2009.08.063.
  • Casellas, J.; Bearpark, M. J.; Reguero, M. Excited-State Decay in the Photoisomerisation of Azobenzene: A New Balance between Mechanisms. Chemphyschem 2016, 17, 3068–3079. DOI: 10.1002/cphc.201600502.
  • Modrow, A.; Zargarani, D.; Herges, R.; Stock, N. The First Porous MOF with Photoswitchable Linker Molecules. Dalton Trans. 2011, 40, 4217–4222. DOI: 10.1039/c0dt01629b.
  • Osella, S.; Granucci, G.; Persico, M.; Knippenberg, S. Dual Photoisomerization Mechanism of Azobenzene Embedded in a Lipid Membrane. J. Mater. Chem. B 2023, 11, 2518–2529. DOI: 10.1039/d2tb02767d.
  • Sun, H.; Guo, S.; Chen, S.; Jia, M.; Shen, S. Thermal Behavior and Decomposition Mechanism of Azobenzene by Using Kinetic Calculation Method and Molecular Dynamics Simulation Method. Process Saf. Environ. Prot. 2022, 161, 447–453. DOI: 10.1016/j.psep.2022.03.057.
  • Russew, M. M.; Hecht, S. Photoswitches: From Molecules to Materials. Adv. Mater. 2010, 22, 3348–3360. DOI: 10.1002/adma.200904102.
  • Bandara, H. M. D.; Burdette, S. C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. DOI: 10.1039/c1cs15179g.
  • Quick, M.; Dobryakov, A. L.; Gerecke, M.; Richter, C.; Berndt, F.; Ioffe, IN.; Granovsky, A. A.; Mahrwald, R.; Ernsting, N. P.; Kovalenko, S. A. Photoisomerization Dynamics and Pathways of Trans- and cis-Azobenzene in Solution from Broadband Femtosecond Spectroscopies and Calculations. J. Phys. Chem. B 2014, 118, 8756–8771. DOI: 10.1021/jp504999f.
  • Klajn, R. Spiropyran-Based Dynamic Materials. Chem. Soc. Rev. 2014, 43, 148–184. DOI: 10.1039/c3cs60181a.
  • Kortekaas, L.; Browne, W. R. The Evolution of Spiropyran: Fundamentals and Progress of an Extraordinarily Versatile Photochrome. Chem. Soc. Rev. 2019, 48, 3406–3424. DOI: 10.1039/c9cs00203k.
  • Jeong, M.; Park, J.; Kwon, S. Molecular Switches and Motors Powered by Orthogonal Stimuli. Eur. J. Org. Chem. 2020, 2020, 7254–7283. DOI: 10.1002/ejoc.202001179.
  • Cardano, F.; Del Canto, E.; Giordani, S. Spiropyrans for Light-Controlled Drug Delivery. Dalton Trans. 2019, 48, 15537–15544. DOI: 10.1039/c9dt02092f.
  • Shi, S.; Li, K.-D.; Li, Y.-X.; Ma, Z.-D.; Qi, S.-C.; Liu, X.-Q.; Sun, L.-B. Spiropyran-Embedded Metal-Organic Frameworks with Thermoresponsiveness for Tunable Gas Adsorption. ACS Materials Lett. 2023, 5, 2189–2196. DOI: 10.1021/acsmaterialslett.3c00476.
  • Tian, W.; Tian, J. An Insight into the Solvent Effect on Photo-, Solvato-Chromism of Spiropyran through the Perspective of Intermolecular Interactions. Dyes Pigm. 2014, 105, 66–74. DOI: 10.1016/j.dyepig.2014.01.020.
  • Harada, J.; Kawazoe, Y.; Ogawa, K. Photochromism of Spiropyrans and Spirooxazines in the Solid State: Low Temperature Enhances Photocoloration. Chem. Commun. (Camb) 2010, 46, 2593–2595. DOI: 10.1039/b925514a.
  • Bianco, A.; Ferrari, G.; Castagna, R.; Rossi, A.; Carminati, M.; Pariani, G.; Tommasini, M.; Bertarelli, C. Light-Induced Dipole Moment Modulation in Diarylethenes: A Fundamental Study. Phys. Chem. Chem. Phys. 2016, 18, 31154–31159. DOI: 10.1039/c6cp05609a.
  • Zhang, Z.; Wang, W.; Jin, P.; Xue, J.; Sun, L.; Huang, J.; Zhang, J.; Tian, H. A Building-Block Design for Enhanced Visible-Light Switching of Diarylethenes. Nat. Commun. 2019, 10, 4232. DOI: 10.1038/s41467-019-12302-6.
  • Butova, V. V.; Burachevskaya, O. A.; Podshibyakin, V. A.; Shepelenko, E. N.; Tereshchenko, A. A.; Shapovalova, S. O.; Il’in, O. I.; Bren’, V. A.; Soldatov, A. V. Photoswitchable Zirconium MOF for Light-Driven Hydrogen Storage. Polymers (Basel) 2021, 13, 4052. DOI: 10.3390/polym13224052.
  • Fan, C. B.; Le Gong, L.; Huang, L.; Luo, F.; Krishna, R.; Yi, X. F.; Zheng, A. M.; Zhang, L.; Pu, S. Z.; Feng, X. F.; et al. Significant Enhancement of C2H2/C2H4 Separation by a Photochromic Diarylethene Unit: A Temperature-and Light-Responsive Separation Switch. Angew. Chem. Int. Ed. Engl. 2017, 56, 7900–7906. DOI: 10.1002/anie.201702484.
  • Komarov, I. V.; Afonin, S.; Babii, O.; Schober, T.; Ulrich, A. S. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018, 24, 11245–11254. DOI: 10.1002/chem.201801205.
  • Cheng, H. B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Adv. Mater. 2022, 34, e2108289. DOI: 10.1002/adma.202108289.
  • Irie, M. Diarylethenes for Memories and Switches. Chem. Rev. 2000, 100, 1685–1716. DOI: 10.1021/cr980069d.
  • Xu, C.; Zhang, J.; Xu, W.; Tian, H. Multifunctional Organic Field Effect Transistors Constructed with Photochromic Molecules. Mater. Chem. Front. 2021, 5, 1060–1075. DOI: 10.1039/D0QM00567C.
  • Lerch, M. M.; Szymański, W.; Feringa, B. L. The (Photo)Chemistry of Stenhouse Photoswitches: Guiding Principles and System Design. Chem. Soc. Rev. 2018, 47, 1910–1937. DOI: 10.1039/c7cs00772h.
  • Gomes, R. F. A.; Coelho, J. A. S.; Afonso, C. A. M. Synthesis and Applications of Stenhouse Salts and Derivatives. Chemistry 2018, 24, 9170–9186. DOI: 10.1002/chem.201705851.
  • Clerc, M.; Sandlass, S.; Rifaie-Graham, O.; Peterson, J. A.; Bruns, N.; Read de Alaniz, J.; Boesel, L. F. Visible Light-Responsive Materials: The (Photo)Chemistry and Applications of Donor-Acceptor Stenhouse Adducts in Polymer Science. Chem. Soc. Rev. 2023, 52, 8245–8294. DOI: 10.1039/d3cs00508a.
  • Duan, Y.; Zhao, H.; Xiong, C.; Mao, L.; Wang, D.; Zheng, Y. Learning from Spiropyrans: How to Make Further Developments of Donor-Acceptor Stenhouse Adducts. Chin. J. Chem. 2021, 39, 985–998. DOI: 10.1002/cjoc.202000532.
  • Duan, Y.; Zhao, H.; Xue, G.; Sun, F.; Stricker, F.; Wang, Z.; Mao, L.; He, C.; Read de Alaniz, J.; Zheng, Y.; Wang, D. Controlling the Isomerization of Photoresponsive Molecules through a Limiting Tautomerization Strategy. J. Phys. Chem. B 2022, 126, 3347–3354. DOI: 10.1021/acs.jpcb.2c02005.
  • Helmy, S.; Leibfarth, F. A.; Oh, S.; Poelma, J. E.; Hawker, C. J.; Read de Alaniz, J. Photoswitching Using Visible Light: A New Class of Organic Photochromic Molecules. J. Am. Chem. Soc. 2014, 136, 8169–8172. DOI: 10.1021/ja503016b.
  • Mallo, N.; Foley, E. D.; Iranmanesh, H.; Kennedy, A. D. W.; Luis, E. T.; Ho, J.; Harper, J. B.; Beves, J. E. Structure-Function Relationships of Donor-Acceptor Stenhouse Adduct Photochromic Switches. Chem. Sci. 2018, 9, 8242–8252. DOI: 10.1039/c8sc03218a.
  • Mallo, N.; Brown, P. T.; Iranmanesh, H.; MacDonald, T. S. C.; Teusner, M. J.; Harper, J. B.; Ball, G. E.; Beves, J. E. Photochromic Switching Behaviour of Donor-Acceptor Stenhouse Adducts in Organic Solvents. Chem. Commun. (Camb) 2016, 52, 13576–13579. DOI: 10.1039/c6cc08079k.
  • Lerch, M. M.; Medved, M.; Lapini, A.; Laurent, A. D.; Iagatti, A.; Bussotti, L.; Szymański, W.; Buma, W. J.; Foggi, P.; Di Donato, M.; Feringa, B. L. Tailoring Photoisomerization Pathways in Donor-Acceptor Stenhouse Adducts: The Role of the Hydroxy Group. J. Phys. Chem. A 2018, 122, 955–964. DOI: 10.1021/acs.jpca.7b10255.
  • Hemmer, J. R.; Poelma, S. O.; Treat, N.; Page, Z. A.; Dolinski, N. D.; Diaz, Y. J.; Tomlinson, W.; Clark, K. D.; Hooper, J. P.; Hawker, C.; Read de Alaniz, J. Read de Alaniz, J. Tunable Visible and near Infrared Photoswitches. J. Am. Chem. Soc. 2016, 138, 13960–13966. DOI: 10.1021/jacs.6b07434.
  • Xiong, X.; Sun, F.; Gao, A.; Wang, Z.; Duan, Y.; Yao, Z.; He, C.; Han, R.; Deng, X.; Zheng, Y.; Wang, D. Ester Matters? Promoting Photoisomerization of Donor–Acceptor Stenhouse Adducts in the Solid State and “Burn after Reading” Encryption. Chem. Eng. J. 2022, 450, 138090. DOI: 10.1016/j.cej.2022.138090.
  • Wang, D.; Zhao, L.; Zhao, H.; Wu, J.; Wagner, M.; Sun, W.; Liu, X.; Miao, M-s.; Zheng, Y. Inducing Molecular Isomerization Assisted by Water. Commun. Chem. 2019, 2, 118. DOI: 10.1038/s42004-019-0221-5.
  • Zhao, H.; Wang, D.; Fan, Y.; Ren, M.; Dong, S.; Zheng, Y. Surface with Reversible Green-Light-Switched Wettability by Donor-Acceptor Stenhouse Adducts. Langmuir 2018, 34, 15537–15543. DOI: 10.1021/acs.langmuir.8b03296.
  • Zhao, H.; Qin, X.; Zhao, L.; Dong, S.; Gu, L.; Sun, W.; Wang, D.; Zheng, Y. Invisible Inks for Secrecy and Anticounterfeiting: From Single to Double-Encryption by Hydrochromic Molecules. ACS Appl. Mater. Interfaces 2020, 12, 8952–8960. DOI: 10.1021/acsami.0c00462.
  • Xiong, C.; Xue, G.; Mao, L.; Gu, L.; He, C.; Zheng, Y.; Wang, D. Carbon Spacer Strategy: Control the Photoswitching Behavior of Donor-Acceptor Stenhouse Adducts. Langmuir 2021, 37, 802–809. DOI: 10.1021/acs.langmuir.0c03133.
  • Poelma, S. O.; Oh, S. S.; Helmy, S.; Knight, A. S.; Burnett, G. L.; Soh, H. T.; Hawker, C. J.; Read de Alaniz, J. Controlled Drug Release to Cancer Cells from Modular One-Photon Visible Light-Responsive Micellar System. Chem. Commun. (Camb) 2016, 52, 10525–10528. DOI: 10.1039/c6cc04127b.
  • Duan, Y.; Song, M.; Sun, F.; Xu, Y.; Shi, F.; Wang, H.; Zheng, Y.; He, C.; Liu, X.; Wei, C.; et al. Controlling Isomerization of Photoswitches to Modulate 2D Logic-in-Memory Devices by Organic-Inorganic Interfacial Strategy. Adv. Sci. (Weinh) 2023, 10, e2207443. DOI: 10.1002/advs.202207443.
  • Samanta, S.; Beharry, A. A.; Sadovski, O.; McCormick, T. M.; Babalhavaeji, A.; Tropepe, V.; Woolley, G. A. Photoswitching Azo Compounds in Vivo with Red Light. J. Am. Chem. Soc. 2013, 135, 9777–9784. DOI: 10.1021/ja402220t.
  • Zhang, L.; Deng, Y.; Tang, Y.; Xie, C.; Wu, Z. Solid-State Spiropyrans Exhibiting Photochromic Properties Based on Molecular Flexibility. Mater. Chem. Front. 2021, 5, 3119–3124. DOI: 10.1039/D0QM01086C.
  • Moreno, J.; Gerecke, M.; Grubert, L.; Kovalenko, S. A.; Hecht, S. Sensitized Two-NIR-Photon Z→E Isomerization of a Visible-Light-Addressable Bistable Azobenzene Derivative. Angew. Chem. Int. Ed. Engl. 2015, 55, 1544–1547. DOI: 10.1002/anie.201509111.
  • Arndt, N. B.; Schlüter, F.; Böckmann, M.; Adolphs, T.; Arlinghaus, H. F.; Doltsinis, N. L.; Ravoo, B. J. Self-Assembled Monolayers of Arylazopyrazoles on Glass and Silicon Oxide: Photoisomerization and Photoresponsive Wettability. Langmuir 2022, 38, 735–742. DOI: 10.1021/acs.langmuir.1c02651.
  • Wang, D.; Sun, Q.; Hokkanen, M. J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of Robust Superhydrophobic Surfaces. Nature 2020, 582, 55–59. DOI: 10.1038/s41586-020-2331-8.
  • Meeks, A.; Lerch, M. M.; Schroeder, T. B. H.; Shastri, A.; Aizenberg, J. Spiropyran Photoisomerization Dynamics in Multiresponsive Hydrogels. J. Am. Chem. Soc. 2021, 144, 219–227. DOI: 10.1021/jacs.1c08778.
  • Burk, M. H.; Schröder, S.; Moormann, W.; Langbehn, D.; Strunskus, T.; Rehders, S.; Herges, R.; Faupel, F. Fabrication of Diazocine-Based Photochromic Organic Thin Films via Initiated Chemical Vapor Deposition. Macromolecules 2020, 53, 1164–1170. DOI: 10.1021/acs.macromol.9b02443.
  • Ghebreyessus, K.; Uba, I.; Geddis, D.; Hömmerich, U. Solid-State Photoswitching in Arylazopyrazole-Embedded Polydimethylsiloxane Composite Thin Films. J. Solid State Chem. 2021, 303, 122519. DOI: 10.1016/j.jssc.2021.122519.
  • Weis, P.; Wang, D.; Wu, S. Visible-Light-Responsive Azopolymers with Inhibited π-π Stacking Enable Fully Reversible Photopatterning. Macromolecules 2016, 49, 6368–6373. DOI: 10.1021/acs.macromol.6b01367.
  • Julià-López, A.; Hernando, J.; Ruiz-Molina, D.; González-Monje, P.; Sedó, J.; Roscini, C. Temperature-Controlled Switchable Photochromism in Solid Materials. Angew. Chem. Int. Ed. Engl. 2016, 55, 15044–15048. DOI: 10.1002/anie.201608408.
  • Julià-López, A.; Ruiz-Molina, D.; Hernando, J.; Roscini, C. Solid Materials with Tunable Reverse Photochromism. ACS Appl. Mater. Interfaces 2019, 11, 11884–11892. DOI: 10.1021/acsami.8b22335.
  • Sheth, T.; Seshadri, S.; Prileszky, T.; Helgeson, M. E. Multiple Nanoemulsions. Nat. Rev. Mater. 2020, 5, 214–228. DOI: 10.1038/s41578-019-0161-9.
  • Marlow, F.; Hoffmann, K.; Caro, J. Photoinduced Switching in Nanocomposites of Azobenzene and Molecular Sieves. Adv. Mater. 2004, 9, 567–570. DOI: 10.1002/adma.19970090711.
  • Ohara, K.; Inokuma, Y.; Fujita, M. The Catalytic Z to E Isomerization of Stilbenes in a Photosensitizing Porous Coordination Network. Angew. Chem. Int. Ed. Engl. 2010, 49, 5507–5509. DOI: 10.1002/anie.201001902.
  • Yamaguchi, T.; Imwiset, K. J.; Ogawa, M. Efficient Negative Photochromism by the Photoinduced Migration of Photochromic Merocyanine/Spiropyran in the Solid State. Langmuir 2021, 37, 3702–3708. DOI: 10.1021/acs.langmuir.1c00150.
  • Wu, H.; Reali, R. S.; Smith, D. A.; Trachtenberg, M. C.; Li, J. Highly Selective CO2 Capture by a Flexible Microporous Metal-Organic Framework (MMOF) Material. Chemistry 2010, 16, 13951–13954. DOI: 10.1002/chem.201002683.
  • Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal-Organic Frameworks for Separations. Chem. Rev. 2011, 112, 869–932. DOI: 10.1021/cr200190s.
  • Liu, J.; Wang, Y. Research on Improved MOF Materials Modified by Functional Groups for Purification of Water. Molecules 2023, 28, 2141. DOI: 10.3390/molecules28052141.
  • Al-Jubouri, S. M.; Al-Batty, S.; Al-Hamd, R. K. S.; Sims, R.; Hakami, M. W.; Sk, M. H. Sustainable Environment through Using Porous Materials: A Review on Wastewater Treatment. Asia-Pacific J. Chem. Eng. 2023, 18, e2941. DOI: 10.1002/apj.2941.
  • Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. DOI: 10.1039/b807080f.
  • Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2009, 9, 172–178. DOI: 10.1038/nmat2608.
  • Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed. Engl. 2006, 45, 5974–5978. DOI: 10.1002/anie.200601878.
  • Hermann, D.; Emerich, H.; Lepski, R.; Schaniel, D.; Ruschewitz, U. Metal-Organic Frameworks as Hosts for Photochromic Guest Molecules. Inorg. Chem. 2013, 52, 2744–2749. DOI: 10.1021/ic302856b.
  • Williams, D. E.; Martin, C. R.; Dolgopolova, E. A.; Swifton, A.; Godfrey, D. C.; Ejegbavwo, O. A.; Pellechia, P. J.; Smith, M. D.; Shustova, N. B. Flipping the Switch: Fast Photoisomerization in a Confined Environment. J. Am. Chem. Soc. 2018, 140, 7611–7622. DOI: 10.1021/jacs.8b02994.
  • Modrow, A.; Feyand, M.; Zargarani, D.; Herges, R.; Stock, N. Systematic Investigation of Porous Inorganic-Organic Hybrid Compounds with Photo-Switchable Properties. Z. Anorg. Allg. Chem. 2012, 638, 2138–2143. DOI: 10.1002/zaac.201200048.
  • Brown, J. W.; Henderson, B. L.; Kiesz, M. D.; Whalley, A. C.; Morris, W.; Grunder, S.; Deng, H.; Furukawa, H.; Zink, J. I.; Stoddart, J. F.; Yaghi, O. M. Photophysical Pore Control in an Azobenzene-Containing Metal-Organic Framework. Chem. Sci. 2013, 4, 2858–2864. DOI: 10.1039/c3sc21659d.
  • Patel, D. G.; Walton, I. M.; Cox, J. M.; Gleason, C. J.; Butzer, D. R.; Benedict, J. B. Photoresponsive Porous Materials: The Design and Synthesis of Photochromic Diarylethene-Based Linkers and a Metal-Organic Framework. Chem. Commun. (Camb) 2014, 50, 2653–2656. DOI: 10.1039/c3cc49666j.
  • Walton, I. M.; Cox, J. M.; Coppin, J. A.; Linderman, C. M.; Patel, D. G.; Benedict, J. B. Photo-Responsive MOFs: Light-Induced Switching of Porous Single Crystals Containing a Photochromic Diarylethene. Chem. Commun. (Camb) 2013, 49, 8012–8014. DOI: 10.1039/c3cc44119a.
  • Zhang, F.; Zou, X.; Feng, W.; Zhao, X.; Jing, X.; Sun, F.; Ren, H.; Zhu, G. Microwave-Assisted Crystallization Inclusion of Spiropyran Molecules in Indium Trimesate Films with Antidromic Reversible Photochromism. J. Mater. Chem. 2012, 22, 25019–25026. DOI: 10.1039/c2jm34618d.
  • Sun, F.; Xiong, X.; Gao, A.; Duan, Y.; Mao, L.; Gu, L.; Wang, Z.; He, C.; Deng, X.; Zheng, Y.; Wang, D. Fast Photochromism in Solid: Microenvironment in Metal-Organic Frameworks Promotes the Isomerization of Donor-Acceptor Stenhouse Adducts. Chem. Eng. J. 2022, 427, 132037. DOI: 10.1016/j.cej.2021.132037.
  • Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. DOI: 10.1126/science.1067208.
  • Kanj, A. B.; Müller, K.; Heinke, L. Stimuli-Responsive Metal-Organic Frameworks with Photoswitchable Azobenzene Side Groups. Macromol. Rapid Commun. 2017, 39, 1700239. DOI: 10.1002/marc.201700239.
  • Kim, D.; Kang, M.; Ha, H.; Hong, C. S.; Kim, M. Multiple Functional Groups in Metal-Organic Frameworks and Their Positional Regioisomerism. Coord. Chem. Rev. 2021, 438, 213892. DOI: 10.1016/j.ccr.2021.213892.
  • Li, Z.; Zhao, S.; Wang, H.; Peng, Y.; Tan, Z.; Tang, B. Functional Groups Influence and Mechanism Research of UiO-66-Type Metal-Organic Frameworks for Ketoprofen Delivery. Colloids Surf. B Biointerfaces 2019, 178, 1–7. DOI: 10.1016/j.colsurfb.2019.02.027.
  • Tang, X.; Luo, Y.; Zhang, Z.; Ding, W.; Liu, D.; Wang, J.; Guo, L.; Wen, M. Effects of Functional Groups of -NH2 and -NO2 on Water Adsorption Ability of Zr-Based MOFs (UiO-66). Chem. Phys. 2021, 543, 111093. DOI: 10.1016/j.chemphys.2021.111093.
  • Yin, W.; Tao, C-a.; Wang, F.; Huang, J.; Qu, T.; Wang, J. Tuning Optical Properties of MOF-Based Thin Films by Changing the Ligands of MOFs. Sci. China Mater. 2017, 61, 391–400. DOI: 10.1007/s40843-017-9143-5.
  • Sun, Q.; Zhu, Y.; Zhong, X.; Jiang, M.; Fan, Y.; Yao, J. Tuning Photoactive MIL-68(in) by Functionalized Ligands for Boosting Visible-Light Nitrogen Fixation. ACS Appl. Mater. Interfaces. 2022, 14, 53904–53915. DOI: 10.1021/acsami.2c17007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.