243
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Polymer hydrogels: Classification and recent advances

Pages 265-288 | Received 02 Feb 2024, Accepted 05 Mar 2024, Published online: 19 Mar 2024

References

  • Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120, 7642–7707. DOI: 10.1021/acs.chemrev.0c00345.
  • Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. (Basel) 2020, 12, 2702. DOI: 10.3390/polym12112702.
  • Rizwan, M.; Gilani, S. R.; Durani, A. I.; Naseem, S. Materials Diversity of Hydrogel: Synthesis, Polymerization Process and Soil Conditioning Properties in Agricultural Field. J. Adv. Res. 2021, 33, 15–40. DOI: 10.1016/j.jare.2021.03.007.
  • Ahmad, Z.; Salman, S.; Khan, S. A.; Amin, A.; Rahman, Z. U.; Al-Ghamdi, Y. O.; Akhtar, K.; Bakhsh, E. M.; Khan, S. B. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022, 8, 167. DOI: 10.3390/gels8030167.
  • Ma, S.; Yu, B.; Pei, X.; Zhou, F. Structural Hydrogels. Polymer 2016, 98, 516–535. DOI: 10.1016/j.polymer.2016.06.053.
  • Bertrand, T.; Peixinho, J.; Mukhopadhyay, S.; MacMinn, C. W. Dynamics of Swelling and Drying in a Spherical Gel. Phys. Rev. Appl 2016, 6, 064010.
  • Young, N. P.; Balsara, N. P. Flory–Huggins Equation. In Encycl. Polym. Nanomater., Kobayashi, S., Müllen, K., (Eds.), Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp. 1–7
  • Ullah, F.; Othman, M.; Javed, F.; Ahmad, Z.; Akil, M. H. Classification, Processing and Application of Hydrogels: A Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 414–433. DOI: 10.1016/j.msec.2015.07.053.
  • Gyles, D. A.; Castro, L. D.; Silva, J. O. C.; Ribeiro-Costa, R. M. A Review of the Designs and Prominent Biomedical Advances of Natural and Synthetic Hydrogel Formulations. Eur. Polym. J. 2017, 88, 373–392. DOI: 10.1016/j.eurpolymj.2017.01.027.
  • Tang, G.; Zhou, B.; Li, F.; Wang, W.; Liu, Y.; Wang, X.; Liu, C.; Ye, X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng. Biotechnol. 2020, 8, 745.
  • Catoira, M. C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of Natural Hydrogels for Regenerative Medicine Applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. DOI: 10.1007/s10856-019-6318-7.
  • Gomez-Florit, M.; Pardo, A.; Domingues, R. M. A.; Graça, A. L.; Babo, P. S.; Reis, R. L.; Gomes, M. E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020, 25, 5858. DOI: 10.3390/molecules25245858.
  • Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. DOI: 10.3390/gels3010006.
  • Nonoyama, T.; Gong, J. P.; Dreiss, C. A. Hydrogel Design Strategies for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. DOI: 10.1016/j.cocis.2020.02.001.
  • Naderi, P.; Kabiri, K.; Jahanmardi, R.; Mohammad, J. Z.-M. Preparation of Itaconic Acid Bio-Based Cross-Linkers for Hydrogels. Journal of Macromolecular Science, Part A 2021, 58, 165–174. DOI: 10.1080/10601325.2020.1836492.
  • Silverstein, M. S. Interpenetrating Polymer Networks: So Happy Together? Polymer 2020, 207, 122929. DOI: 10.1016/j.polymer.2020.122929.
  • Dhand, A. P.; Galarraga, J. H.; Burdick, J. A. Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks. Trends Biotechnol. 2021, 39, 519–538. DOI: 10.1016/j.tibtech.2020.08.007.
  • Zheng, Y.; Wang, A. Superadsorbent Gels with Three-Dimensional Networks: From Bulk Hydrogel to Granular Hydrogel. Eur. Polym. J. 2015, 72, 661–686. DOI: 10.1016/j.eurpolymj.2015.02.031.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Omidian, H.; Park, K.; Rocca, J. G. Recent Developments inSuperporous Hydrogels. J. Pharm. Pharmacol. 2007, 59, 317–327. DOI: 10.1211/jpp.59.3.0001.
  • Desu, P. K.; Pasam, V.; Kotra, V. Implications of Superporous Hydrogel Composites-Based Gastroretentive Drug Delivery Systems with Improved Biopharmaceutical Performance of Fluvastatin. J. Drug Delivery Sci. Technol. 2020, 57, 101668. DOI: 10.1016/j.jddst.2020.101668.
  • Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive Polymers in Controlled Drug Delivery. Prog. Polym. Sci. 2008, 33, 1088–1118. DOI: 10.1016/j.progpolymsci.2008.07.005.
  • Koetting, M. C.; Jonathan, T. P.; Steichen, S. D.; Peppas, N. A. Stimulus-Responsive Hydrogels: Theory, Modern Advances, and Applications. Mater. Sci. Eng. R Rep. 2015, 93, 1–49. DOI: 10.1016/j.mser.2015.04.001.
  • Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew. Chem. Int. Ed. 2020, 59, 15342–15377.
  • Kopecek, J. Hydrogels: From Soft Contact Lenses and Implants to Self-Assembled Nanomaterials. J. Polym. Sci. A Polym. Chem. 2009, 47, 5929–5946. DOI: 10.1002/pola.23607.
  • Zhang, K.; Qian Feng, Q.; Zhiwei Fang, Z.; Luo Gu, L.; Bian, L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem. Rev. 2021, 121, 11149–11193. DOI: 10.1021/acs.chemrev.1c00071.
  • Lee, J. H. Injectable Hydrogels Delivering Therapeutic Agents for Disease Treatment and Tissue Engineering. Biomater. Res. 2018, 22, 27. DOI: 10.1186/s40824-018-0138-6.
  • Zhao, L.; Xue, X.; Guoying, X.; Zhao, C. Research Progress of Hydrogel-Mediated Disease Therapeutics. J.Nanopart. Res 2021, 23, 105.
  • Li, J.; Mooney, D. J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. DOI: 10.1038/natrevmats.2016.71.
  • Xu, Y.; Hu, Q.; Wei, Z.; Ou, Y.; Cao, Y.; Zhou, H.; Wang, M.; Yu, K.; Liang, B. Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomater. Res. 2023, 27, 36. DOI: 10.1186/s40824-023-00379-6.
  • Mao, W.; Ji, Q.; Chen, P.; Fang, Z.; Li, X. Multifunctional Hydrogel Delivery System for Disease Therapy. Macromol. Res. 2023, 31, 327–338. DOI: 10.1007/s13233-023-00156-3.
  • D., Pal Manisha, Singh, Bharat, Rai, Ambak K., Tewari, Ravi Prakash, Dutta, Pradip Kumar, Sarita,. An Injectable Blend Hydrogel for Bone Tissue Engineering Application: Synthesis and Characterization. Journal of Macromolecular Science, Part A. 2024, 61(1), 2–10. DOI: 10.1080/10601325.2023.2277211.
  • Tang, Y.; Xu, H.; Wang, X.; Dong, S.; Guo, L.; Zhang, S.; Yang, X.; Liu, C.; Jiang, X.; Kan, M.; et al. Advances in Preparation and Application of Antibacterial Hydrogels. J. Nanobiotechnology. 2023, 21, 300. DOI: 10.1186/s12951-023-02025-8.
  • Liu, J.; Qu, S.; Suo, Z.; Yang, W. Functional Hydrogel Coatings. Natl. Sci. Rev. 2021, 8, nwaa254. DOI: 10.1093/nsr/nwaa254.
  • Lee, Y.; Song, W. J.; Sun, J.-Y. Hydrogel Soft Robotics. Materials Today Physics 2020, 15, 100258. DOI: 10.1016/j.mtphys.2020.100258.
  • Chen, Y.; Zhang, Y.; Li, H.; Shen, J.; Zhang, F.; He, J.; Lin, J.; Wang, B.; Niu, S.; Han, Z.; Guo, Z. Bioinspired Hydrogel Actuator for Soft Robotics: Opportunity and Challenges. Nano Today 2023, 49, 101764. DOI: 10.1016/j.nantod.2023.101764.
  • Sun, J.-Y.; Keplinger, C.; Whitesides, G. M.; Suo, Z. Ionic Skin. Adv. Mater. 2014, 26, 7608–7614. DOI: 10.1002/adma.201403441.
  • Ying, B.; Liu, X. Skin-like Hydrogel Devices for Wearable Sensing, Soft Robotics and Beyond. iScience 2021, 24, 103174. DOI: 10.1016/j.isci.2021.103174.
  • Park, H.; Woo, E. K.; Lee, K. Y. Ionically Cross-Linkable Hyaluronate-Based Hydrogels for Injectable Cell Delivery. J. Control. Release 2014, 196, 146–153. DOI: 10.1016/j.jconrel.2014.10.008.
  • Simhadri, J. J.; Stretz, H. A.; Oyanader, M.; Arce, P. E. Role of Nanocomposite Hydrogel Morphology in the Electrophoretic Separation of Biomolecules: A Review. Ind. Eng. Chem. Res. 2010, 49, 11866–11877. DOI: 10.1021/ie1003762.
  • Kemik, Ö. F.; Yildiz, U. Synthesis, Characterization and Evaluation of Novel HIPE Hydrogels: Application for Treatment of Hazardous Waste Incineration Plant Effluent. Journal of Macromolecular Science, Part A 2022, 59, 613–624. DOI: 10.1080/10601325.2022.2101925.
  • Yin, H.; Liu, F.; Abdiryim, T.; Liu, X. Self-Healing Hydrogels: From Synthesis to Multiple Applications. ACS Materials Lett. 2023, 5, 1787–1830. DOI: 10.1021/acsmaterialslett.3c00320.
  • Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C. P.; Kadumudi, F. B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G.; Dolatshahi-Pirouz, A. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? Adv. Sci. (Weinh) 2019, 6, 1801664. DOI: 10.1002/advs.201801664.
  • Dell, A. C.; Wagner, G.; Own, J.; Geibel, J. P. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022, 14, 2596. DOI: 10.3390/pharmaceutics14122596.
  • Unagolla, J. M.; Jayasuriya, A. C. Hydrogel-Based 3D Bioprinting: A Comprehensive Review on Cell-Laden Hydrogels, Bioink Formulations, and Future Perspectives. Appl. Mater. Today. 2020, 18, 100479. DOI: 10.1016/j.apmt.2019.100479.
  • Enrique, M. S.; Carlos, G.-B. J.; Esther, L. N.; Javier, C. G.; Antonio, M.-G.; María, A. D. D.; Pablo, C.-A. J.; Diego, T. M.; Miguel, S.-M. F.; Blas, P. J. Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Front. Bioeng. Biotechnol. 2020, 8, 776.
  • Lima, T.; Canelas, C.; Concha, V. O. C.; Costa, F.; Passos, M. F. 3D Bioprinting Technology and Hydrogels Used in the Process. J. Funct. Biomater. 2022, 13, 214. DOI: 10.3390/jfb13040214.
  • Matsumoto, M.; Danno, A. Radiation Effects of Poly(Vinyl Alcohol). Int. J. Appl. Radiat. Isot. 1959, 7, 55–56.
  • Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117–118. DOI: 10.1038/185117a0.
  • Gregonis, D. E.; Russell, G. A.; Andrade, J. D.; de Visser, A. C. Preparation and Properties of Stereoregular Poly(Hydroxyethyl Methacrylate) Polymers and Hydrogels. Polymer 1978, 19, 1279–1284. DOI: 10.1016/0032-3861(78)90305-1.
  • Betul, H.; Bingol, S.; Agopcan-Cinar, T.; Bal, D.; Oran, C.; Kizilel, S.; Nilhan, K.-A.; Avci, D. Stimuli-Responsive Poly(Hydroxyethyl Methacrylate) Hydrogels from Carboxylic Acid-Functionalized Crosslinkers. J. Biomed. Matl. Res 2019, 107, 2013–2025.
  • Moura, D.; Pereira, A. T.; Ferreira, H. P.; Barrias, C. C.; Magalhães, F. D.; Bergmeister, H.; Gonçalves, I. C. Poly(2-Hydroxyethyl Methacrylate) Hydrogels Containing Graphene-Based Materials for Blood-Contacting Applications: From Soft Inert to Strong Degradable Material. Acta Biomater. 2023, 164, 253–268. DOI: 10.1016/j.actbio.2023.04.031.
  • El-Sayed, N. S.; Awad, H.; El-Sayed, G. M.; Nagieb, Z. A.; Kamel, S. Synthesis and Characterization of Biocompatible Hydrogel Based on Hydroxyethyl Cellulose-g-Poly(Hydroxyethyl Methacrylate). Polym. Bull. 2020, 77, 6333–6347. DOI: 10.1007/s00289-019-02962-1.
  • a. Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.K.; Seyfoddin, A.; Fatihhi, S.J. Acrylic Acid/AcrylamideBased Hydrogels and Its Properties - A Review. Polym. Degrad. Stab. 2020, 180, 109308. b. Kang, M., Cheng, Y., Hu, Y.; Ding, H.; Yang, H.; Wei, Y.; Huan, D. Self-Healing Poly(Acrylic Acid) Hydrogels Fabricated by Hydrogen Bonding and Fe3+ Ion Cross-Linking for Cartilage Tissue Engineering. Front. Mater. Sci. 2023, 17, 230655. DOI: 10.1016/j.polymdegradstab.2020.109308.
  • Pakdel, P. M.; Peighambardoust, S. J. A Review on Acrylic Based Hydrogels and Their Applications in Wastewater Treatment. J. Environ. Manage. 2018, 217, 123–143. DOI: 10.1016/j.jenvman.2018.03.076.
  • Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Zheng Ding, Z.; Ye, J. Poly(Vinyl Alcohol) Hydrogels: The Old and New Functional Materials. Intl J. Poly Sci 2021, 2021, 1–16. DOI: 10.1155/2021/2225426.
  • Chen, Y.; Li, J.; Lu, J.; Ding, M.; Chen, Y. Synthesis and Properties of Poly(Vinyl Alcohol) Hydrogels with High Strength and Toughness. Polym. Test. 2022, 108, 107516. DOI: 10.1016/j.polymertesting.2022.107516.
  • Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. A Review of Poly(Vinyl Alcohol) and Its Uses in Cartilage and Orthopaedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1451–1457. DOI: 10.1002/jbm.b.32694.
  • Chen, Y.; Song, J.; Wang, S.; Liu, W. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair. Macromol. Biosci. 2021, 21, e2100147. DOI: 10.1002/mabi.202100147.
  • Statnik, E. S.; Sorokina, E. A.; Larin, I. I.; Yu, K.; Salimon, A. I.; Kalyaev, V. Y.; Zherebtsov, D. D.; Zadorozhnyy, M.; Korsunsky, A. M. The Characterization of PVA/PHY Hydrogels for 3D Printing Fabrication of Organ Phantoms. Mater. Today: Proc. 2020, 33, 1874–1879. DOI: 10.1016/j.matpr.2020.05.343.
  • Gao, T.; Jiang, M.; Liu, X.; You, G.; Wang, W.; Sun, Z.; Ma, A.; Chen, J. Patterned Polyvinyl Alcohol Hydrogel Dressings with Stem Cells Seeded for Wound Healing. Polymers. (Basel) 2019, 11, 171. DOI: 10.3390/polym11010171.
  • Peppas, N. A.; Keys, K. B.; Torres-Lugo, M.; Lowman, A. M. Poly(Ethylene Glycol)-Containing Hydrogels in Drug Delivery. J. Control. Release 1999, 62, 81–87. DOI: 10.1016/s0168-3659(99)00027-9.
  • Lin, C. C.; Anseth, K. S. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631–643. DOI: 10.1007/s11095-008-9801-2.
  • Wang, Z.; Ye, Q.; Yu, S.; Akhavan, B. Poly(Ethylene Glycol) (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv. Heathcare Mater. 2023, 12, 2300105.
  • Sun, S.; Cui, Y.; Yuan, B.; Dou, M.; Wang, G.; Xu, H.; Wang, J.; Yin, W.; Wu, D.; Peng, C. Drug Delivery Systems Based on Polyethylene Glycol Hydrogels for Enhanced Bone Regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1117647. DOI: 10.3389/fbioe.2023.1117647.
  • Liu, S.; Jiang, T.; Guo, R.; Li, C.; Lu, C.; Yang, G.; Nie, J.; Wang, F.; Yang, X.; Chen, Z. Injectable and Degradable PEG Hydrogel with Antibacterial Performance for Promoting Wound Healing. ACS Appl. Bio Mater. 2021, 4, 2769–2780. DOI: 10.1021/acsabm.1c00004.
  • Lu, X.; Perera, T. H.; Aria, A. B.; Callahan, L. A. S. Polyethylene Glycol in Spinal Cord Injury Repair: A Critical Review. J. Exp. Pharmacol. 2018, 10, 37–49. DOI: 10.2147/JEP.S148944.
  • Maitz, M. F.; Zitzmann, J.; Hanke, J.; Renneberg, C.; Tsurkan, M. V.; Sperling, C.; Freudenberg, U.; Werner, C. Adaptive Release of Heparin from Anticoagulant Hydrogels Triggered by Different Blood Coagulation Factors. Biomaterials 2017, 135, 53–61. DOI: 10.1016/j.biomaterials.2017.04.044.
  • Kapusta, O.; Jarosz, A.; Stadnik, K.; Giannakoudakis, D. A.; Barczyński, B.; Barczak, M. Antimicrobial Natural Hydrogels in Biomedicine: Properties, Applications, and Challenges—a Concise Review. Int. J. Mol. Sci. 2023, 24, 2191. DOI: 10.3390/ijms24032191.
  • Park, H.; Lee, H. J.; An, H.; Lee, K. Y. Alginate Hydrogels Modified with Low Molecular Weight Hyaluronate for Cartilage Regeneration. Carbohydr. Polym. 2017, 162, 100–107. DOI: 10.1016/j.carbpol.2017.01.045.
  • Wang, Y.; He, L.; Ding, L.; Zhao, X.; Ma, H.; Luo, Y.; Ma, S.; Xiong, Y. Fabrication of Cyclodextrin-Based Hydrogels for Wound Healing: Progress, Limitations, and Prospects. Chem. Mater. 2023, 35, 5723–5743. DOI: 10.1021/acs.chemmater.3c00926.
  • Liu, J.; Tian, B.; Liu, Y.; Wan, J. B. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int. J. Mol. Sci. 2021, 22, 13516. DOI: 10.3390/ijms222413516.
  • Xu, Q.; Torres, J. E.; Hakim, M.; Babiak, P. M.; Pal, P.; Battistoni, C. M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J. C. Collagen and Hyaluronic Acid-Based Hydrogels and Their Biomedical Applications. Materials Science and Engineering: R: Reports 2021, 146, 100641. DOI: 10.1016/j.mser.2021.100641.
  • Hwang, H. S.; Lee, C.-S. Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering. Gels 2023, 9, 588. DOI: 10.3390/gels9070588.
  • Mabesoone, M. F. J.; Gopez, J. D.; Paulus, I. E.; Klinger, D. Tunable Biohybrid Hydrogels from Coacervation of Hyaluronic Acid and PEO-Based Block Copolymers. J. Polym. Sci. 2020, 58, 1276–1287. DOI: 10.1002/pol.20200081.
  • Almajidi, Y. Q.; Gupta, J.; Sheri, F. S.; Zabibah, R. S.; Faisal, A.; Ruzibayev, A.; Adil, M.; Saadh, M. J.; Jawad, M. J.; Alsaikhan, F.; et al. Advances in Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications: A Comprehensive Review. Int. J. Biol. Macromol. 2023, 253, 127278. art. no. DOI: 10.1016/j.ijbiomac.2023.127278.
  • Taokaew, S.; Kaewkong, W.; Kriangkrai, W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023, 9, 277. DOI: 10.3390/gels9040277.
  • Akhtar, M. F.; Hanif, M.; Ranjha, N. M. Methods of Synthesis of Hydrogels. A Review. Saudi Pharm. J. 2016, 24, 554–559. 0123456789 DOI: 10.1016/j.jsps.2015.03.022.
  • Duquette, D.; Dumont, M. J. Comparative Studies of Chemical Crosslinking Reactions and Applications of Bio-Based Hydrogels. Polym. Bull. 2019, 76, 2683–2710. DOI: 10.1007/s00289-018-2516-6.
  • Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in Crosslinking Strategies of Biomedical Hydrogels. Biomater. Sci. 2019, 7, 843–855. DOI: 10.1039/c8bm01246f.
  • Xu, J.; Liu, X.; Ren, X.; Gao, G. The Role of Chemical and Physical Crosslinking in Different Deformation Stages of Hybrid Hydrogels. Eur. Polym. J. 2018, 100, 86–95. DOI: 10.1016/j.eurpolymj.2018.01.020.
  • Xue, X.; Hu, Y.; Wang, S.; Chen, X.; Jiang, Y.; Su, J. Fabrication of Physical and Chemical Crosslinked Hydrogels for Bone Tissue Engineering. Bioact. Mater. 2022, 12, 327–339. DOI: 10.1016/j.bioactmat.2021.10.029.
  • Rebers, L.; Reichsöllner, R.; Regett, S.; Tovar, G. E. M.; Borchers, K.; Baudis, S.; Southan, A. Differentiation of Physical and Chemical Cross-Linking in GelatinMethacryloyl Hydrogels. Sci. Rep. 2021, 11, 3256. DOI: 10.1038/s41598-021-82393-z.
  • Matyjaszewski, K.; Beers, K. L.; Kern, A.; Gaynor, S. G. Hydrogels by Atom Transfer Radical Polymerization. I. Poly (N-Vinylpyrrolidinone-g-Styrene) via the Macromonomer Method. J. Polym. Sci. A Polym. Chem. 1998, 36, 823–830. DOI: 10.1002/(SICI)1099-0518(19980415)36:5<823::AID-POLA15>3.0.CO;2-I.
  • Nguyen, K. T.; West, J. L. Photopolymerizable Hydrogels for Tissue Engineering Applications. Biomaterials 2002, 23, 4307–4314. DOI: 10.1016/s0142-9612(02)00175-8.
  • Ehrbar, M.; Rizzi, S. C.; Schoenmakers, R. G.; Miguel, B. S.; Hubbell, J. A.; Weber, F. E.; Lutolf, M. P. Biomolecular Hydrogels Formed and Degraded via Site-Specific Enzymatic Reactions. Biomacromolecules 2007, 8, 3000–3007. DOI: 10.1021/bm070228f.
  • Yeh, Y.-Y.; Tsai, Y.-T.; Wu, C.-Y.; Tu, L.-H.; Bai, M.-Y.; Yeh, Y.-C. The Role of Aldehyde-Functionalized Crosslinkers on the Property of Chitosan Hydrogels. Macromol. Biosci. 2022, 22, e2100477. DOI: 10.1002/mabi.202100477.
  • Park, K. M.; Park, K. D. In Situ Cross-Linkable Hydrogels as a Dynamic Matrix for Tissue Regenerative Medicine. Tissue Eng. Regen. Med. 2018, 15, 547–557. DOI: 10.1007/s13770-018-0155-5.
  • Su, J. Thiol-Mediated Chemoselective Strategies for in Situ Formation of Hydrogels. Gels 2018, 4, 72. DOI: 10.3390/gels4030072.
  • Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E. Michael Addition Reactions in Macromolecular Design for Emerging Technologies. Prog. Polym. Sci. 2006, 31, 487–531. DOI: 10.1016/j.progpolymsci.2006.03.001.
  • Fu, Y.; Kao, W. J. In Situ Forming Poly(Ethylene Glycol)-Based Hydrogels via Thiol-Maleimide Michael-Type Addition. J. Biomed. Mater. Res. A 2011, 98, 201–211. DOI: 10.1002/jbm.a.33106.
  • Godesky, M. D.; Shreiber, D. I. Hyaluronic Acid-Based Hydrogels with Independently Tunable Mechanical and Bioactive Signaling Features. Biointerphases 2020, 14, 061005. DOI: 10.1063/1.5126493.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
  • Devaraj, N. K.; Finn, M. G. Introduction: Click Chemistry. Chem. Rev. 2021, 121, 6697–6698. DOI: 10.1021/acs.chemrev.1c00469.
  • Gopinathan, J.; Noh, I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng. Regen. Med. 2018, 15, 531–546. DOI: 10.1007/s13770-018-0152-8.
  • Li, X.; Xiong, Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega. 2022, 7, 36918–36928. DOI: 10.1021/acsomega.2c03931.
  • Li, Y.; Wang, X.; Han, Y.; Sun, H. Y.; Hilborn, J.; Shi, L. Click Chemistry-Based Biopolymeric Hydrogels for Regenerative Medicine. Biomed. Mater. 2021, 16, 022003. DOI: 10.1088/1748-605X/abc0b3.
  • Parhi, R. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Adv. Pharm. Bull. 2017, 7, 515–530. DOI: 10.15171/apb.2017.064.
  • Nikolić, L. B.; Zdravković, A. S.; Nikolić, V. D.; Ilić-Stojanović, S. S. Synthetic Hydrogels and Their Impact on Health and Environment. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. 2018.
  • Asim, R. M.; Jin-Oh, J.; Hyun, P. S. State-of-the-Art Irradiation Technology for Polymeric Hydrogel Fabrication and Application in Drug Release System. Front. Mater. 2021, 8, 769436.
  • Jeong, J. O.; Park, J. S.; Kim, E. J.; Jeong, S. I.; Lee, J. Y.; Lim, Y. M. Preparation of Radiation Cross-Linked Poly(Acrylic Acid) Hydrogel Containing Metronidazole with Enhanced Antibacterial Activity. Int. J. Mol. Sci. 2019, 21, 187. DOI: 10.3390/ijms21010187.
  • Elbarbary, A. M.; Ghobashy, M. M.; El Khalafawy, G. K.; Salem, M. A.; Kodous, A. S. Radiation Cross-Linking of pH-Sensitive Acrylic Acid Hydrogel Based Polyvinylpyrrolidone/2-Dimethylamino Ethyl Methacrylate Loaded with Betamethasone Dipropionate Drug and in Vitro anti-Inflammatory Assessment. J. Drug Delivery Sci. Technol. 2023, 89, 105024. DOI: 10.1016/j.jddst.2023.105024.
  • Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S. Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. Macromol. Rapid Commun. 2004, 25, 1739–1764. DOI: 10.1002/marc.200400313.
  • Luef, K. P.; Hoogenboom, R.; Schubert, U. S.; Wiesbrock, F. Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines. Adv. Polym. Sci. 2015, 274, 183–208. DOI: 10.1007/12_2015_340.
  • Kabir, E. Application of Microwave Heating in Polymer Synthesis: A Review. Results Chem. 2023, 6, 101178. DOI: 10.1016/j.rechem.2023.101178.
  • Cook, J. P.; Goodall, G. W.; Khutoryanskaya, O. V.; Khutoryanskiy, V. V. Microwave -Assisted Hydrogel Synthesis: A New Method for Crosslinking Polymers in Aqueous Solutions. Macromol. Rapid Commun. 2012, 33, 332–336. DOI: 10.1002/marc.201100742.
  • Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification according to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. DOI: 10.3390/gels7040182.
  • Attwood, D.; Zhou, Z.; Booth, C. Poly(Ethylene Oxide) Based Copolymers: Solubilisation Capacity and Gelation. Expert Opin. Drug Deliv. 2007, 4, 533–546. DOI: 10.1517/17425247.4.5.533.
  • Bodratti, A. M.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. DOI: 10.3390/jfb9010011.
  • Song, G.; Zhang, L.; He, C.; Fang, D.-C.; Whitten, P. G.; Wang, H. Facile Fabrication of Tough Hydrogels Physically Cross-Linked by Strong Cooperative Hydrogen Bonding. Macromolecules 2013, 46, 7423–7435. DOI: 10.1021/ma401053c.
  • You, Y.; Yang, J.; Zheng, Q.; Wu, N.; Lv, Z.; Jiang, Z. Ultra-Stretchable Hydrogels with Hierarchical Hydrogen Bonds. Sci. Rep. 2020, 10, 11727. DOI: 10.1038/s41598-020-68678-9.
  • Yu, H.; Xiao, Q.; Qi, G.; Chen, F.; Tu, B.; Zhang, S.; Li, Y.; Chen, Y.; Yu, H.; Duan, P. A Hydrogen Bonds-Crosslinked Hydrogels with Self-Healing and Adhesive Properties for Hemostatic. Front. Bioeng. Biotechnol. 2022, 10, 855013. DOI: 10.3389/fbioe.2022.855013.
  • Han, Z.; Wang, P.; Lu, Y.; Jia, Z.; Qu, S.; Yang, W. A Versatile Hydrogel Network-Repairing Strategy Achieved by the Covalent-like Hydrogen Bond Interaction. Sci. Adv. 2022, 8, eabl5066. DOI: 10.1126/sciadv.abl5066.
  • Chu, W.; Nie, M.; Ke, X.; Luo, J.; Li, J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol. Biosci. 2021, 21, e2100109. DOI: 10.1002/mabi.202100109.
  • Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133–136. DOI: 10.1038/nature11409.
  • Hu, M.; Gu, X.; Hu, Y.; Wang, T.; Huang, J.; Wang, C. Low Chemically Cross-Linked PAM/C-Dot Hydrogel with Robustness and Superstretchability in Both as-Prepared and Swelling Equilibrium States. Macromolecules 2016, 49, 3174–3183. DOI: 10.1021/acs.macromol.5b02352.
  • Zhou, L.; He, B.; Huang, J. Amphibious Fluorescent Carbon Dots: One-Step Green Synthesis and Application for Light-Emitting Polymer Nanocomposites. Chem. Commun. (Camb.). 2013, 49, 8078–8080. DOI: 10.1039/c3cc43295e.
  • Zhang, L.; Zhang, R.; Cui, P.; Cao, W.; Gao, F. An Efficient Phosphorescence Energy Transfer between Quantum Dots and Carbon Nanotubes for Ultrasensitive Turn-On Detection of DNA. Chem. Commun. (Camb.). 2013, 49, 8102–8104. DOI: 10.1039/c3cc42958j.
  • Chen, Q.; Yan, X.; Zhu, L.; Chen, H.; Jiang, B.; Wei, D.; Huang, L.; Yang, J.; Liu, B.; Zheng, J. Improvement of Mechanical Strength and Fatigue Resistance of Double Network Hydrogels by Ionic Coordination Interactions. Chem. Mater. 2016, 28, 5710–5720. DOI: 10.1021/acs.chemmater.6b01920.
  • Lin, P.; Ma, S.; Wang, X.; Zhou, F. Molecularly Engineered Dual-Crosslinked Hydrogel with Ultrahigh Mechanical Strength, Toughness, and Good Self-Recovery Adv. Adv. Mater. 2015, 27, 2054–2059. DOI: 10.1002/adma.201405022.
  • Han, C.; Zhang, H.; Wu, Y.; He, X.; Chen, X. Dual-Crosslinked Hyaluronan Hydrogels with Rapid Gelation and High Injectability for Stem Cell Protection. Sci. Rep. 2020, 10, 14997. DOI: 10.1038/s41598-020-71462-4.
  • Kim, H. S.; Lee, K. Y. Stretchable and Self-Healable Hyaluronate-Based Hydrogels for Three-Dimensional Bioprinting. Carbohydr. Polym. 2022, 295, 119846. DOI: 10.1016/j.carbpol.2022.119846.
  • Zhang, M.; Chen, X.; Yang, K.; Dong, Q.; Yang, H.; Gu, S.; Xu, W.; Zhou, Y. Dual-Crosslinked Hyaluronic Acid Hydrogel with Self-Healing Capacity and Enhanced Mechanical Properties. Carbohydr. Polym. 2023, 301, 120372. DOI: 10.1016/j.carbpol.2022.120372.
  • Nonoyama, T.; Gong, J. P. Tough Double Network Hydrogel and Its Biomedical Applications. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 393–410. DOI: 10.1146/annurev-chembioeng-101220-080338.
  • Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of Double Network Hydrogels. J. Mater. Chem. B 2015, 3, 3654–3676. DOI: 10.1039/c5tb00123d.
  • Xu, X.; Jerca, V. V.; Hoogenboom, R. Bioinspired Double Network Hydrogels: From Covalent Double Network Hydrogels via Hybrid Double Network Hydrogels to Physical Double Network Hydrogels. Mater. Horiz. 2021, 8, 1173–1188. DOI: 10.1039/d0mh01514h.
  • Gong, J. P. Why Are Double Network Hydrogels so Tough? Soft Matter 2010, 6, 2583–2590. DOI: 10.1039/b924290b.
  • Lieou, C. K. C.; Elbanna, A. E.; Carlson, J. M. Sacrificial Bonds and Hidden Length in Biomaterials: A Kinetic Constitutive Description of Strength and Toughness in Bone. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2013, 88, 012703. DOI: 10.1103/PhysRevE.88.012703.
  • Ren, Y.; Huang, T.; Zhao, X.; Wang, K.; Zhao, L.; Tao, A.; Jiang, J.; Yuan, M.; Wang, J.; Tu, Q. Double Network Hydrogel Based on Curdlan and Flaxseed Gum with Photothermal Antibacterial Properties for Accelerating Infectious Wound Healing. Int. J. Biol. Macromol. 2023, 242, 124715. DOI: 10.1016/j.ijbiomac.2023.124715.
  • Li, G.; Zhang, H.; Fortin, D.; Xia, H.; Zhao, Y. Poly(Vinyl Alcohol)-Poly(Ethylene Glycol) Double-Network Hydrogel: A General Approach to Shape Memory and Self-Healing Functionalities. Langmuir 2015, 31, 11709–11716. DOI: 10.1021/acs.langmuir.5b03474.
  • Matsuda, T.; Kawakami, R.; Nakajima, T.; Gong, J. P. Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission through Mechanoradical Polymerization. Macromolecules 2020, 53, 8787–8795. DOI: 10.1021/acs.macromol.0c01485.
  • Wang, Z. J.; Jiang, J.; Mu, Q.; Maeda, S.; Nakajima, T.; Gong, J. P. Azo-Crosslinked Double-Network Hydrogels Enabling Highly Efficient Mechanoradical Generation. J. Am. Chem. Soc. 2022, 144, 3154–3161. DOI: 10.1021/jacs.1c12539.
  • Sharma, S.; Parmar, A.; Mehta, S. K. Chapter 16 - Hydrogels: From Simple Networks To Smart Materials—Advances And Applications. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A. M., Ed.; William Andrew Publishing, 2018; pp 627–672.
  • a. Chen, Y.; Jiao, C.; Peng, X.; Liu, T.; Shi, Y.; Liang, M.; Wang, H. Biomimetic Anisotropic Poly(Vinyl Alcohol) Hydrogels with Significantly Enhanced Mechanical Properties by Freezing-Thawing under Drawing. J. Mater. Chem. B 2019, 7, 3243–3249. b. Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. DOI: 10.3390/ijms23073665.
  • Eslahi, N.; Abdorahim, M.; Simchi, A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016, 17, 3441–3463. DOI: 10.1021/acs.biomac.6b01235.
  • Vázquez-González, M.; Willner, I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 15342–15377. DOI: 10.1002/anie.201907670.
  • Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive Polymers. Polym. Chem. 2017, 8, 144–176. DOI: 10.1039/C6PY01872F.
  • Avais, M.; Chattopadhyay, S. Waterborne pH Responsive Hydrogels: Synthesis, Characterization and Selective pH Responsive Behavior around Physiological pH. Polymer 2019, 180, 121701. DOI: 10.1016/j.polymer.2019.121701.
  • Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A. D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C. N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers. (Basel) 2017, 9, 137. DOI: 10.3390/polym9040137.
  • Singh, J.; Nayak, P. pH-Responsive Polymers for Drug Delivery: Trends and Opportunities. J. Polym. Sci 2023, 61, 2828–2850. DOI: 10.1002/pol.20230403.
  • Huang, J.; Jiang, X. Injectable and Degradable pH-Responsive Hydrogels via Spontaneous Amino-Yne Click Reaction. ACS Appl. Mater. Interfaces. 2018, 10, 361–370. DOI: 10.1021/acsami.7b18141.
  • Chen, M.; Zhai, X.; Pan, Y.; Tan, H. Covalent and Environment-Responsive Biopolymer Hydrogel for Drug Delivery and Wound Healing. J. Macromol. Sci., Part A 2021, 58, 736–747. DOI: 10.1080/10601325.2021.1929316.
  • Suhail, M.; Ullah, H.; Vu, Q. L.; Khan, A.; Tsai, M.-J.; Wu, P.-C. Preparation of pH-Responsive Hydrogels Based on Chondroitin Sulfate/Alginate for Oral Drug Delivery. Pharmaceutics 2022, 14, 2110. DOI: 10.3390/pharmaceutics14102110.
  • Wei, M.; Inoue, T.; Hsu, Y.-I.; Sung, M.-H.; Fukuoka, T.; Kobayashi, S.; Uyama, H. Preparation of pH-Responsive Poly(γ-Glutamic Acid) Hydrogels by Enzymatic Crosslinking. ACS Biomater. Sci. Eng. 2022, 8, 551–559. DOI: 10.1021/acsbiomaterials.1c01378.
  • Zhang, K.; Xue, K.; Loh, X. J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7, 77. DOI: 10.3390/gels7030077.
  • Liu, X.-M.; Wang, L.-S.; Wang, L.; Huang.; He, J. C. The Effect of Salt and pH on the Phase-Transition Behaviours of Temperature-Sensitive Copolymers Based on N-Isopropylacrylamide. Biomaterials 2004, 25, 5659–5666. DOI: 10.1016/S0142-9612(04)00058-4.
  • Futscher, M. H.; Philipp, M.; Müller-Buschbaum, P.; Schulte, A. The Role of Backbone Hydration of Poly(N-Isopropyl Acrylamide) across the Volume Phase Transition Compared to Its Monomer. Sci. Rep. 2017, 7, 17012. DOI: 10.1038/s41598-017-17272-7.
  • Ansari, M. J.; Rajendran, R. R.; Mohanto, S.; Agarwal, U.; Panda, K.; Dhotre, K.; Manne, R.; Deepak, A.; Zafar, A.; Yasir, M.; Pramanik, S. Poly(N-Isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022, 8, 454. DOI: 10.3390/gels8070454.
  • Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-Isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Prog. Mater. Sci. 2021, 115, 100702. DOI: 10.1016/j.pmatsci.2020.100702.
  • Wu, J.-Y.; Liu, S.-Q.; Heng, P. W.-S.; Yang, Y.-Y. Evaluating Proteins Release from, and Their Interactions with, Thermosensitive Poly (N-Isopropylacrylamide) Hydrogels. J. Control. Release 2005, 102, 361–372. DOI: 10.1016/j.jconrel.2004.10.008.
  • Rana, M. M.; Siegler, H. D. l H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers. (Basel) 2021, 13, 3154. DOI: 10.3390/polym13183154.
  • Yao, H.; Wang, J.; Mi, S. Photo Processing for Biomedical Hydrogels Design and Functionality: A Review. Polymers. (Basel) 2018, 10, 11. DOI: 10.3390/polym10010011.
  • Li, L.; Scheiger, J. M.; Levkin, P. A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 319, 1807333.
  • Kim, J.; Park, J.; Ahn, S.; Park, S.; Yu, H.; Yu, J.; Kim, D.; Lim, J. Y.; Hyun, K. A.; Koh, W. G.; Jung, H. I. On-Demand Delivery of Therapeutic Extracellular Vesicles by Encapsulating in Monodispersed Photodegradable Hydrogel Microparticles Using a Droplet Microfluidic Device. Sens. Actuators, B 2023, 394, 134396. DOI: 10.1016/j.snb.2023.134396.
  • Lim, S.; Kim, J. A.; Chun, Y. H.; Lee, H. J. Hyaluronic Acid Hydrogel for Controlled Release of Heterobifunctional Photocleavable Linker-Modified Epidermal Growth Factor in Wound Healing. Int. J. Biol. Macromol. 2023, 253, 126603. DOI: 10.1016/j.ijbiomac.2023.126603.
  • Vashist, A.; Kaushik, A.; Alexis, K.; Dev, J. R.; Sagar, V.; Vashist, A.; Nair, M. Bioresponsive Injectable Hydrogels for on-Demand Drug Release and Tissue Engineering. Curr. Pharm. Des. 2017, 23, 3595–3602. DOI: 10.2174/1381612823666170516144914.
  • Sgambato, A.; Cipolla, L.; Russo, L. Bioresponsive Hydrogels: Chemical Strategies and Perspectives in Tissue Engineering. Gels 2016, 2, 28. DOI: 10.3390/gels2040028.
  • Barhoum, A.; Sadak, O.; Ramirez, I. A.; Iverson, N. Stimuli-Bioresponsive Hydrogels as New Generation Materials for Implantable, Wearable and Disposable Biosensors for Medical Diagnostics: Principles, Opportunities, and Challenges. Adv. Colloid Interface Sci. 2023, 317, 102920. DOI: 10.1016/j.cis.2023.102920.
  • Wu, Q.; Hu, Y.; Yu, B.; Hu, H.; Xu, F.-J. Polysaccharide-Based Tumor Microenvironment-Responsive Drug Delivery Systems for Cancer Therapy (2023). J. Control. Release 2023, 362, 19–43. DOI: 10.1016/j.jconrel.2023.08.019.
  • Fischer, A.; Ehrlich, A.; Plotkin, Y.; Ouyang, Y.; Asulin, K.; Konstantinos, I.; Fan, C.; Nahmias, Y. Willner, I. Stimuli-Responsive Hydrogel Microcapsules Harnessing the COVID-19 Immune Response for Cancer Therapeutics. Angew. Chem. Int. Ed. 2023, 62, e20231159.
  • Samira, A.-F.; Musteata, E.; Doerfert, M. D.; Baruch, M.; Levitan, M.; Tabor, J.; Veiseh, J. O. Hydrogel-Encapsulation to Enhance Bacterial Diagnosis of Colon Inflammation. Biomaterials 2023, 301, 122246. DOI: 10.1016/j.biomaterials.2023.122246.
  • Kost, J.; Wolfrum, J.; Langer, R. Magnetically Enhanced Insulin Release in Diabetic Rats. J. Biomed. Mater. Res. 1987, 21, 1367–1373. DOI: 10.1002/jbm.820211202.
  • Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-Responsive Hydrogels: From Strategic Design to Biomedical Applications. J. Control. Release 2021, 335, 541–556. DOI: 10.1016/j.jconrel.2021.06.003.
  • Liu, Z.; Liu, J.; Cui, X.; Wang, X.; Zhang, L.; Tang, P. Recent Advances on Magnetic Sensitive Hydrogels in Tissue Engineering. Front. Chem. 2020, 8, 124. DOI: 10.3389/fchem.2020.00124.
  • Adedoyin, A. A.; Ekenseair, A. K. Biomedical Applications of Magneto-Responsive Scaffolds. Nano Res. 2018, 11, 5049–5064. DOI: 10.1007/s12274-018-2198-2.
  • Araújo-Custódio, S.; Gomez-Florit, M.; Tomás, A. R.; Mendes, B. B.; Babo, P. S.; Mithieux, S. M.; Weiss, A.; Domingues, R. M. A.; Reis, R. L.; Gomes, M. E. Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomater. Sci. Eng. 2019, 5, 1392–1404. DOI: 10.1021/acsbiomaterials.8b01179.
  • Benedikt, P.; Nowak, M. N.; Ravoo, B. J. Magneto-Responsive Hydrogels by Self-Assembly of Low Molecular Weight Peptides and Crosslinking with Iron-Oxide Nanoparticles. Soft Matter. 2021, 17, 2857–2864. DOI: 10.1039/d0sm02049d.
  • Vítková, L.; Kazantseva, N.; Musilová, L.; Smolka, P.; Valášková, K.; Kocourková, K.; Humeník, M.; Minařík, A.; Humpolíček, P.; Mráček, A.; Smolková, I. Magneto-Responsive Hyaluronan Hydrogel for Hyperthermia and Bioprinting: Magnetic, Rheological Properties and Biocompatibility. APL Bioeng 2023, 7, 036113.
  • Okihara, M.; Matsuda, A.; Kawamura, A.; Miyata, T. Design of Dual Stimuli-Responsive Gels with Physical and Chemical Properties That Vary in Response to Light and Temperature and Cell Behavior on Their Surfaces. Polym. J. 2023, 56, 193–204. DOI: 10.1038/s41428-023-00865-7.
  • Kasiński, A.; Świerczek, A.; Zielińska-Pisklak, M.; Kowalczyk, S.; Plichta, A.; Zgadzaj, A.; Oledzka, E.; Sobczak, M. Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems - Synthesis and Characterization. Int. J. Mol. Sci. 2023, 24, 6906. DOI: 10.3390/ijms24086906.
  • Yu, S.; Zhang, X.; Tan, G.; Tian, L.; Liu, D.; Liu, Y.; Yang, X.; Pan, W. A Novel Ph-Induced Thermosensitive Hydrogel Composed of Carboxymethyl Chitosan and Poloxamer Cross-Linked by Glutaraldehyde for Ophthalmic Drug Delivery. Carbohydr. Polym. 2017, 155, 208–217. DOI: 10.1016/j.carbpol.2016.08.073.
  • Gundogdu, D.; Alemdar, C.; Turan, C.; Hazal, H. H.; Banerjee, S.; Erel-Goktepe, I. Tuning Stimuli-Responsive Properties of Alginate Hydrogels through Layer-By-Layer Functionalization for Dual-Responsive Dual Drug Release. Colloids Surf, A 2023676, 676, 132213. DOI: 10.1016/j.colsurfa.2023.132213.
  • Ganguly, M. D. Nanohybrid Materials Using Gold Nanoparticles and RAFT-Synthesized Polymers for Biomedical Applications. J. Macromol. Sci., Part A 2023, 60, 841–855.
  • Howaili, F.; Özliseli, E.; Küçüktürkmen, B.; Razavi, S. M.; Sadeghizadeh, M.; Rosenholm, J. M. Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Front. Chem. 2020, 8, 602941. DOI: 10.3389/fchem.2020.602941.
  • Mahdian, M.; Asrari, S. A.; Ahmadi, M.; Madrakian, T.; Jalal, N. R.; Afkhami, A.; Moradi, M.; Gholami, L. Dual Stimuli-Responsive Gelatin-Based Hydrogel for pH and Temperature-Sensitive Delivery of Curcumin Anticancer Drug. J. Drug Delivery Sci. Technol. 2023, 84, 104537. DOI: 10.1016/j.jddst.2023.104537.
  • Deng, Z.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. Multifunctional Stimuli-Responsive Hydrogels with Self-Healing, High Conductivity, and Rapid Recovery through Host-Guest Interactions. Chem. Mater. 2018, 30, 1729–1742. DOI: 10.1021/acs.chemmater.8b00008.
  • Bratskaya, S.; Skatova, A.; Privar, Y.; Boroda, A.; Kantemirova, E.; Maiorova, M.; Pestov, A. Stimuli-Responsive Dual Cross-Linked N-Carboxyethyl Chitosan Hydrogels with Tunable Dissolution Rate. Gels 2021, 7, 188. DOI: 10.3390/gels7040188.
  • Sanzari, I.; Buratti, E.; Huang, R.; Tusan, C. G.; Dinelli, F.; Evans, N. D.; Prodromakis, T.; Bertoldo, M. Poly(N-Isopropylacrylamide) Based Thin Microgel Films for Use in Cell Culture Applications. Sci. Rep. 2020, 10, 6126. DOI: 10.1038/s41598-020-63228-9.
  • Siangsanoh, C.; Ummartyotin, S.; Sathirakul, K.; Rojanapanthu, P.; Treesupphara, W.; Siangsanoh, S.; Ummartyotin, Sathirakul, K.; Rojanapanthu, P.; Treesuppharat, W. Fabrication and Characterization of Triple-Responsive Composite Hydrogel for Targeted and Controlled Drug Delivery System. J. Mol. Liq. 2018, 256, 90–99. DOI: 10.1016/j.molliq.2018.02.026.
  • Xu, C.; Yu, X.; Liu, Y.; Zhang, X.; Liu, S. Versatile Graphene Oxide Hybrid Supramolecular Hydrogel Driven by Host-Guest Interaction Showing Excellent Mechanical and Sensing Properties and Photothermal Responsiveness. ACS Appl. Polym. Mater. 2023, 5, 7375–7389. DOI: 10.1021/acsapm.3c01281.
  • Zhang, W.; Chen, W.; Lv, J.; Wu, Y.; Ba, X.; Fang, L. Multi-Responsive P(DMAEMA-co-COU) Hydrogel for Temperature Sensor and Information Encryption. Eur. Polym. J. 2023, 198, 112433. DOI: 10.1016/j.eurpolymj.2023.112433.
  • Zhang, X.; Aziz, S.; Salahuddin, B.; Zhu, Z. Thermoresponsive Hydrogel Artificial Muscles. Matter 2023, 6, 2735–2775. DOI: 10.1016/j.matt.2023.05.030.
  • Banerjee, H.; Suhail, M.; Ren, H. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics 2018, 3, 15. DOI: 10.3390/biomimetics3030015.
  • Zhang, F.; Xiong, L.; Ai, Y.; Liang, Z.; Liang, Q. Stretchable Multiresponsive Hydrogel with Actuatable, Shape Memory, and Self-Healing Properties. Adv. Sci. (Weinh) 2018, 5, 1800450. DOI: 10.1002/advs.201800450.
  • Lu, W.; Si, M.; Le, X.; Chen, T. Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels. Acc. Chem. Res. 2022, 55, 2291–2303. DOI: 10.1021/acs.accounts.2c00320.
  • Zhang, Y.; Zheng, T.; Jiang, S. Bioinspired Hydrogel Actuators with Multiple and Synergistic Responses towards a Single Stimulus. Dyes Pigm. 2023, 220, 111658. DOI: 10.1016/j.dyepig.2023.111658.
  • El Sayed, M. M. Production of Polymer Hydrogel Composites and Their Applications. J. Polym. Environ. 2023, 31, 2855–2879. DOI: 10.1007/s10924-023-02796-z.
  • Omidian, H.; Chowdhury, S. D. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023, 9, 533. DOI: 10.3390/gels9070533.
  • Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y. K.; Ahmad, S.; Nair, M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Health Mater 2018, 7, e1701213.
  • Amiri, M.; Khazaeli, P.; Salehabadi, A.; Salavati-Niasari, M. Hydrogel Beads-Based Nanocomposites in Novel Drug Delivery Platforms: Recent Trends and Developments. Adv. Colloid Interface Sci. 2021, 288, 102316. DOI: 10.1016/j.cis.2020.102316.
  • Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. J. Am. Chem. Soc. 2007, 129, 4878–4879. DOI: 10.1021/ja070457+.
  • Li, H.; Wang, D. W.; Chen, H. L.; Liu, B. L.; Gao, L. Z. A Novel Gelatin–Carbon Nanotubes Hybrid Hydrogel. Macromol. Biosci. 2003, 3, 720–724. DOI: 10.1002/mabi.200300034.
  • Servant, A.; Bussy, C.; Al-Jamal, K.; Kostarelos, K. Design, Engineering and Structural Integrity of Electro-Responsive Carbon Nanotube-Based Hydrogels for Pulsatile Drug Release. J. Mater. Chem. B 2013, 1, 4593–4600. DOI: 10.1039/c3tb20614a.
  • Tarhanlı, İ.; Senses, E. Cellulose Nanocrystal and Pluronic L121-Based Thermo-Responsive Composite Hydrogels. Carbohydr. Polym. 2023, 321, 121281. DOI: 10.1016/j.carbpol.2023.121281.
  • Javanbakht, S.; Namazi, H. Doxorubicin Loaded Carboxymethyl Cellulose/Graphene Quantum Dot Nanocomposite Hydrogel Films as a Potential Anticancer Drug Delivery System. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 87, 50–59. DOI: 10.1016/j.msec.2018.02.010.
  • Javanbakht, S.; Nazari, N.; Rakhshaei, R.; Namazi, H. Cu-Crosslinked Carboxymethylcellulose/Naproxen/Graphene Quantum Dot Nanocomposite Hydrogel Beads for Naproxen Oral Delivery. Carbohydr. Polym. 2018, 195, 453–459. DOI: 10.1016/j.carbpol.2018.04.103.
  • Rakhshaei, R.; Namazi, H.; Hamishehkar, H.; Rahimi, M. Graphene Quantum Dot Cross-Linked Carboxymethyl Cellulose Nanocomposite Hydrogel for Ph-Sensitive Oral Anticancer Drug Delivery with Potential Bioimaging Properties. Int. J. Biol. Macromol. 2020, 150, 1121–1129. DOI: 10.1016/j.ijbiomac.2019.10.118.
  • Li, J.; Ding, Q.; Wang, H.; Wu, Z.; Gui, X.; Li, C.; Hu, N.; Tao, K.; Wu, J. Engineering Smart Composite Hydrogel for Wearable Disease Monitoring. Nanomicro. Lett. 2023, 15, 105. DOI: 10.1007/s40820-023-01079-5.
  • Bakshi, S.; Pandey, P.; Mohammed, Y.; Wang, J.; Sailor, M. J.; Popat, A.; Parekh, H. S.; Kumeria, T. Porous Silicon Embedded in a Thermoresponsive Hydrogel for Intranasal Delivery of Lipophilic Drugs to Treat Rhinosinusitis. J. Control. Release 2023, 363, 452–463. DOI: 10.1016/j.jconrel.2023.09.045.
  • Voycheva, C.; Slavkova, M.; Popova, T.; Tzankova, D.; Stefanova, D.; Tzankova, V.; Ivanova, I.; Tzankov, S.; Spassova, I.; Kovacheva, D.; Tzankov, B. Thermosensitive Hydrogel-Functionalized Mesoporous Silica Nanoparticles for Parenteral Application of Chemotherapeutics. Gels 2023, 9, 769. DOI: 10.3390/gels9090769.
  • Nasseri, R.; Bouzari, N.; Huang, J.; Golzar, H.; Jankhani, S.; Tang, X. S.; Mekonnen, T. H.; Aghakhani, A.; Shahsavan, H. Programmable Nanocomposites of Cellulose Nanocrystals and Zwitterionic Hydrogels for Soft Robotics. Nat. Commun. 2023, 14, 6108. DOI: 10.1038/s41467-023-41874-7.
  • Khoshgard, K.; Ahmadi, N.; Jaymand, M. Stimuli-Responsive “Theranostic” Nanocomposite Hydrogels Based on beta-Cyclodextrin Containing Fe3O4 and Bi2O3 Nanoparticles for Targeted Delivery of Methotrexate. Carbohydrate Polymer Technologies and Applications 2023, 6, 100369. DOI: 10.1016/j.carpta.2023.100369.
  • Jing, H.; Xin, L.; Qun, G.; Chunfa, O.; Kangsheng, Z.; Xiaoqian, S. Thermosensitive PNIPAM-Based Hydrogel Crosslinked by Composite Nanoparticles as Rapid Wound-Healing Dressings. Biomacromolecules 2023, 24, 1345–1354. DOI: 10.1021/acs.biomac.2c01380.
  • Kaiquan, L.; Wei, S.; Song, L.; Liu, H.; Wang, T. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives. J. Agric. Food Chem 2020, 68, 7269–7280.
  • Khan, B.; Abdullah, S.; Khan, S. Current Progress in Conductive Hydrogels and Their Applications in Wearable Bioelectronics and Therapeutics. Micromachines. (Basel) 2023, 14, 1005. DOI: 10.3390/mi14051005.
  • Gandla, K.; Kumar, K. P.; Rajasulochana, P.; Charde, M. S.; Rana, R.; Singh, L. P.; Haque, M. A.; Bakshi, V.; Siddiqui, F. A.; Khan, S. L.; Ganguly, S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023, 9, 669. DOI: 10.3390/gels9080669.
  • Zhang, Z.; Tang, L.; Chen, C.; Yu, H.; Bai, H.; Wang, L.; Qin, M.; Feng, Y.; Feng, W. Liquid Metal-Created Macroporous Composite Hydrogels with Self-Healing Ability and Multiple Sensations as Artificial Flexible Sensors. J. Mater. Chem. A 2021, 9, 875–883. DOI: 10.1039/D0TA09730F.
  • Wu, J.; Han, S.; Yang, T.; Li, Z.; Wu, Z.; Gui, X.; Tao, K.; Miao, J.; Norford, L. K.; Liu, C.; Huo, F. Highly Stretchable and Transparent Thermistor Based on Self-Healing Double Network Hydrogel. ACS Appl. Mater. Interfaces. 2018, 10, 19097–19105. DOI: 10.1021/acsami.8b03524.
  • Sun, X.; Zhong, W.; Zhang, Z.; Liao, H.; Zhang, C. Stretchable, Self-Healable and anti-Freezing Conductive Hydrogel Based on Double Network for Strain Sensors and Arrays. J. Mater. Sci. 2022, 57, 12511–12521. DOI: 10.1007/s10853-022-07379-2.
  • Zhang, X.; Pang, J. A Self-Healing and Wearable Hydrogel Sensor with a Dynamic Physical Cross-Linking Structure Can Detect Strain Stimulus in a Wide Temperature Range. J. Mater. Chem. C 2023, 11, 11988–11999. DOI: 10.1039/D3TC01730C.
  • Zhang, W.; Wang, P.-L.; Huang, L.-Z.; Guo, W.-Y.; Zhao, J.; Ma, M.-G. A Stretchable, Environmentally Tolerant, and Photoactive Liquid Metal/Mxene Hydrogel for High Performance Temperature Monitoring, Human Motion Detection and Self-Powered Application. Nano Energy 2023, 117, 108875. DOI: 10.1016/j.nanoen.2023.108875.
  • Zhao, B.; Bai, Z.; Lv, H.; Yan, Z.; Du, Y.; Guo, X.; Zhang, J.; Wu, L.; Deng, J.; Zhang, D. W.; Che, R. Self-Healing Liquid Metal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding. Nanomicro. Lett. 2023, 15, 79. DOI: 10.1007/s40820-023-01043-3.
  • Sebri, N.; J. M.; Abdul Latip, A. F.; Adnan, R.; Hussin, M. H.; Kobayashi, T. Enhancement of Poly(Vinyl Alcohol) Using Delaminated Layered Double Hydroxide for the Formulation of Mechanically Strong Nanocomposite Hydrogel. J. Appl. Polym. Sci 2019, 137, 48637.
  • Wei, Y.; Qian, Y.; Zhu, P.; ·Xiang, L.; Lei, C.; Qiu, G.; ·Wang, C.; ·Liu, Y.; Liu, Y.; ·Chen, G. Nanocellulose-Templated Carbon Nanotube Enhanced Conductive Organohydrogel for Highly-Sensitive Strain and Temperature Sensors. Cellulose 2022, 29, 3829–3844. DOI: 10.1007/s10570-022-04516-7.
  • Zhang, J.; Hu, Y.; Zhang, L.; Zhou, J.; Lu, A. Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel toward High-Performance Soft Electronics. Nanomicro. Lett. 2023, 15, 8. DOI: 10.1007/s40820-022-00980-9.
  • Tang, S.; Chi, K.; Xu, H.; Yong, Q.; Yang, J.; Catchmark, J. M. A Covalently Cross-Linked Hyaluronic Acid/Bacterial Cellulose Composite Hydrogel for Potential Biological Applications. Carbohydr. Polym. 2021, 252, 117123. DOI: 10.1016/j.carbpol.2020.117123.
  • Kumar, A.; Matari, I. A. I.; Choi, H.; Kim, A.; Suk, Y. J.; Kim, J. Y.; Han,.; S.; S. Development of Halloysite Nanotube/Carboxylated-Cellulose Nanocrystal-Reinforced and Ionically-Crosslinked Polysaccharide Hydrogels. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109983. DOI: 10.1016/j.msec.2019.109983.
  • Liu, F.; Liu, C.; Chen, Q.; Ao, Q.; Tian, X.; Fan, J.; Tong, H.; Wang, X. Progress in Organ 3D Bioprinting. Int. J. Bioprint. 2018, 4, 128. DOI: 10.18063/IJB.v4i1.128.
  • Smith, D. K.; Piras, C. C. Multicomponent Polysaccharide Alginate-Based BioinksJournal. J. Mater. Chem. B 2020, 8, 8171–8188. DOI: 10.1039/d0tb01005g.
  • Rastogi, P.; Kandasubramanian, B. Review of Alginate-Based Hydrogel Bioprinting for Application in Tissue Engineering. Biofabrication 2019, 11, 042001. DOI: 10.1088/1758-5090/ab331e.
  • Urciuolo, A.; Giobbe, G. G.; Dong, Y.; Michielin, F.; Brandolino, L.; Magnussen, M.; Gagliano, O.; Selmin, G.; Scattolini, V.; Raffa, P.; et al. Hydrogel-in-Hydrogel Live Bioprinting for Guidance and Control of Organoids and Organotypic Cultures. Nat. Commun. 2023, 14, 3128. DOI: 10.1038/s41467-023-37953-4.
  • Daly, A. C.; Davidson, M. D.; Burdick,.; J.; A. 3D Bioprinting of High Cell-Density Heterogeneous Tissue Models through Spheroid Fusion within Self-Healing Hydrogels. Nat. Commun. 2021, 12, 753. DOI: 10.1038/s41467-021-21029-2.
  • Chen, B.; Anvari-Yazdi, A. F.; Duan, X.; Zimmerling, A.; Gharraei, R.; Sharma, N. K.; Sweilem, S.; Ning, L. Biomaterials/Bioinks and Extrusion Bioprinting. Bioact. Mater. 2023, 28, 511–536. DOI: 10.1016/j.bioactmat.2023.06.006.
  • Mainardi, J. C.; Rezwan, K.; Maas, M. Genipin-Crosslinked Chitosan/Alginate/Alumina Nanocomposite Gels for 3D Bioprinting. Bioprocess Biosyst. Eng. 2022, 45, 171–185. DOI: 10.1007/s00449-021-02650-3.
  • Ribeiro, L. S.; Gaspar, V. M.; Sobreiro-Almeida, R.; Camargo, E. R.; Mano, J. F. Programmable Granular Hydrogel Inks for 3D Bioprinting Applications. Adv. Mater. Technol. 2023, 8, 2300209. DOI: 10.1002/admt.202300209.
  • Sekar, M. P.; Suresh, S.; Zennifer, A.; Sethuraman, S.; Sundaramurthi, D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2023, 9, 3134–3159. DOI: 10.1021/acsbiomaterials.3c00299.
  • Goregen, İS.; Ozay, O. Use of Polyvinyl Alcohol-Based Cationic Hydrogels Modified with Gold Nanoparticles as Drug and Gene Delivery Systems with Enhanced Antibacterial Properties. Journal of Macromolecular Science, Part A 2023, 60, 778–789. DOI: 10.1080/10601325.2023.2258929.
  • Chuang, Y.-Y.; Deka, J. R.; Hsieh, W.-Y.; Rwei, S.-P.; Shiu, J.-W.; Way, T. F. Synthesis and Characterization of PNM@IAM Core-Shell Microgels through Inverse Emulsion Polymerization and Its Application for Heavy Metal Ions Capture. J. Macromol. Sci., Part A 2023, 60, 427–441. DOI: 10.1080/10601325.2023.2213699.
  • An, Y.; Zhai, R.; Chen, J.; Xie, P. Preparation and Application of a Novel pH-Responsive Linalool Carboxymethyl Chitosan Hydrogel. J. Macromol. Sci., Part A. 2023, 60, 336–345. DOI: 10.1080/10601325.2023.2195879.
  • Zhang, C.; Yao, A.; Lan, J.; Dou, B.; Yang, L.; Lin, S. Fabrication of Poly(Itaconic Acid)-G-Potassium Alginate Aerogels as Eco-Friendly Biosorbents for Removal of Cationic Dyes. J. Macromol. Sci., Part A 2023, 60, 231–245. DOI: 10.1080/10601325.2022.2140674.
  • Ilgin, P.; Onder, A.; Kıvanç, M. R.; Ozay, H.; Ozay, O. Adsorption of Methylene Blue from Aqueous Solution Using Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid-Co-2-Hydroxyethyl Methacrylate) Hydrogel Crosslinked by Activated Carbon. J. Macromol. Sci., Part A 2023, 60, 135–149. DOI: 10.1080/10601325.2023.2165945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.