53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Gelation of copolymers of acrylamide and sodium acrylate upon coordination with Cu2+ ions in concentrated solutions

, , & ORCID Icon
Pages 313-326 | Received 30 Jan 2024, Accepted 06 Mar 2024, Published online: 03 Apr 2024

References

  • Mentbayeva, A.; Ospanova, A.; Tashmuhambetova, Z.; Sokolova, V.; Sukhishvili, S. Polymer–Metal Complexes in Polyelectrolyte Multilayer Films as Catalysts for Oxidation of Toluene. Langmuir 2012, 28, 11948–11955. DOI: 10.1021/la3025342.
  • Geckeler, K. E. Polymer-Metal Complexes for Environmental Protection. Chemoremediation in the Aqueous Homogeneous Phase. Pure Appl. Chem. 2001, 73, 129–136. DOI: 10.1351/pac200173010129.
  • Hosseinkhani, H.; Hosseinkhani, M. Biodegradable Polymer-Metal Complexes for Gene and Drug Delivery. Curr. Drug Saf. 2009, 4, 79–83. DOI: 10.2174/157488609787354477.
  • Zhang, H.; Yang, H.; Sarsenbekuly, B.; Zhang, M.; Jiang, H.; Kang, W.; Aidarova, S. The Advances of Organic Chromium Based Polymer Gels and Their Application in Improved Oil Recovery. Adv. Colloid Interface Sci. 2020, 282, 102214. DOI: 10.1016/j.cis.2020.102214.
  • Rivas, B. L.; Pereira, E. D.; Mondaca, M. A.; Rivas, R. J.; Saavedra, M. A. Water-Soluble Cationic Polymers and Their Polymer–Metal Complexes with Biocidal Activity: A Genotoxicity Study. J. Appl. Polym. Sci. 2003, 87, 452–457. DOI: 10.1002/app.11399.
  • Xu, S.; Li, X.; Wang, Y.; Hu, Z.; Wang, R. Characterization of Slow-Release Collagen-g-Poly(Acrylic Acid-co-2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid]-Iron(III) Superabsorbent Polymer Containing Fertilizer. J. Appl. Polym. Sci. 2018, 136, 47178.
  • Dzhardimalieva, G. I.; Uflyand, I. E. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J. Inorg. Organomet. Polym. 2018, 28, 1305–1393. DOI: 10.1007/s10904-018-0841-8.
  • Tsuchida, E.; Nishide, H. Polymer-Metal Complexes and Their Catalytic Activity. In Molecular Properties. Advances in Polymer Science; Cantow, H.-J., Dall’Asta, G., Dušek, K., Ferry, J.D., Fujita, H., Gordon, M., Kern, W., Natta, G., Okamura, S., Overberger, C.G., Saegusa, T., Schulz, G.V., Slichter, W.P., Stille, J.K., Eds.; Springer: Berlin, 1977; Vol. 24, pp 1–87.
  • Kaliyappan, T.; Kannan, P. Co-Ordination Polymers. Prog. Polym. Sci. 2000, 25, 343–370. DOI: 10.1016/S0079-6700(00)00005-8.
  • Li, H.; Yang, P.; Pageni, P.; Tang, C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol. Rapid Commun. 2017, 38, 1700109. DOI: 10.1002/marc.201700109.
  • Cordova, M.; Cheng, M.; Trejo, J.; Johnson, S. J.; Willhite, G. P.; Liang, J.; Berkland, C. Delayed HPAM Gelation via Transient Sequestration of Chromium in Polyelectrolyte Complex Nanoparticles. Macromolecules 2008, 41, 4398–4404. DOI: 10.1021/ma800211d.
  • Vargas-Vasquez, S. M.; Romero-Zerón, L. B. A Review of the Partly Hydrolyzed Polyacrylamide Cr(III) Acetate Polymer Gels. Pet. Sci. Technol. 2008, 26, 481–498. DOI: 10.1080/10916460701204594.
  • Te Nijenhuis, K.; Mensert, K.; Zitha, P. L. J. Viscoelastic Behaviour of Partly Hydrolysed Polyacrylamide/Chromium(III) Gels. Rheol. Acta 2002, 42, 132–141. DOI: 10.1007/s00397-002-0264-9.
  • Allain, C.; Salome, L. Gelation of Semidilute Polymer Solutions by Ion Complexation: Critical Behavior of the Rheological Properties versus Cross-Link Concentration. Macromolecules 1990, 23, 981–987. DOI: 10.1021/ma00206a015.
  • Rahbari, R.; François, J. Interactions between Aluminium Ions and Acrylic Acid-Acrylamide Copolymers in Aqueous Solution: 2. Phase Separation. Polymer 1988, 29, 851–859. DOI: 10.1016/0032-3861(88)90144-9.
  • Liu, Y.; Xiong, D. Self‐Healable Polyacrylic Acid‐Polyacrylamide‐Ferric Ion Dual‐Crosslinked Hydrogel with Good Biotribological Performance as a Load‐Bearing Surface. J. Appl. Polym. Sci. 2019, 137, 48499.
  • Axelos, M. A. V.; Mestdagh, M. M.; Francois, J. Phase Diagrams of Aqueous Solutions of Polycarboxylates in the Presence of Divalent Cations. Macromolecules 1994, 27, 6594–6602. DOI: 10.1021/ma00100a052.
  • Oikonomou, E. K.; Lezi, N.; Bokias, G.; Kallitsis, J. K.; Iliopoulos, I. Time-Dependent Cu2+-Induced Gelation of Poly(Ethylene-Alt-Maleic Acid) in Aqueous Solution. Eur. Polym. J. 2009, 45, 3426–3432. DOI: 10.1016/j.eurpolymj.2009.09.011.
  • Oikonomou, E. K.; Bokias, G.; Kallitsis, J. K. Comparative Study of Electrostatic Binding vs. complexation of Cu2+ Ions with Water-Soluble Polymers Containing Styrene Sulphonic Acid and/or Maleic Acid Units or Their Sodium Salt Forms. J. Polym. Sci. B Polym. Phys. 2008, 46, 1149–1158. DOI: 10.1002/polb.21448.
  • Heitz, C.; François, J. Poly(Methacrylic Acid)–Copper Ion Interactions. Polymer 1999, 40, 3331–3344. DOI: 10.1016/S0032-3861(98)00126-8.
  • Mun, G. A.; Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Sarybayeva, G. S.; Dubolazov, A. V. pH-Effects in the Complex Formation of Polymers I. Interaction of Poly(Acrylic Acid) with Poly(Acrylamide). Eur. Polym. J. 2003, 39, 1687–1691. DOI: 10.1016/S0014-3057(03)00065-X.
  • Fomina, E. K.; Krul’, L. P.; Grinyuk, E. V. Phase State of Aqueous Solutions of Acrylamide–Sodium Acrylate Copolymers in the Presence of Copper, Zinc, and Manganese Ions. Russ. J. Appl. Chem. 2015, 88, 1500–1504. DOI: 10.1134/S1070427215090189.
  • Teraoka, I. Polymer Solutions: An Introduction to Physical Properties; Wiley: New York, 2002.
  • Kol, R.; Nachtergaele, P.; De Som’r, T.; D'hooge, D. R.; Achilias, D. S.; De Meester, S. Toward More Universal Prediction of Polymer Solution Viscosity for Solvent-Based Recycling. Ind. Eng. Chem. Res. 2022, 61, 10999–11011. DOI: 10.1021/acs.iecr.2c01487.
  • Graessley, W. Polymer Chain Dimensions and the Dependence of Viscoelastic Properties on Concentration, Molecular Weight and Solvent Power. Polymer 1980, 21, 258–262. DOI: 10.1016/0032-3861(80)90266-9.
  • Ouwerx, C.; Velings, N.; Mestdagh, M.; Axelos, M. A. Physico-Chemical Properties and Rheology of Alginate Gel Beads Formed with Various Divalent Cations. Polym. Gels Netw. 1998, 6, 393–408. DOI: 10.1016/S0966-7822(98)00035-5.
  • Hao, C.; Zhao, Y.; Dong, X.; Zhou, Y.; Xu, Y.; Wang, D.; Lai, G.; Jiang, J. Anomalous Rheological Behavior of Poly(1-Vinyl-2-Pyrrolidone) and CuCl2in Solution and Their Interactions in Solid Composites. Polym. Int. 2009, 58, 906–911. DOI: 10.1002/pi.2611.
  • Neira-Velázquez, M. G.; Rodríguez-Hernández, M. T.; Hernández-Hernández, E.; Ruiz-Martínez, A. R. Y. Polymer Molecular Weight Measurement. In Handbook of Polymer Synthesis, Characterization, and Processing; Saldívar-Guerra, E., Vivaldo-Lima, E., Eds.; Wiley: New York, 2013; pp 355–366.
  • Leung, W. M.; Axelson, D. E.; Syme, D. Determination of Charge Density of Anionic Polyacrylamide Flocculants by NMR and DSC. Colloid Polym. Sci. 1985, 263, 812–817. DOI: 10.1007/BF01412958.
  • Klein, J.; Conrad, K. D. Molecular Weight Determination of Poly(Acrylamide) and Poly(Acrylamide-co-Sodium Acrylate). Makromol. Chem. 1978, 179, 1635–1638. DOI: 10.1002/macp.1978.021790624.
  • Wang, Y. Z.; Li, B. H.; Xiong, X. M.; Wang, B.; Zhang, J. X. Universal Scaling Description of the Strain-Softening Behavior in the Semidilute Uncross-Linked Polyacrylamide-Water Solution. Soft Matter 2010, 6, 3318–3324. DOI: 10.1039/c001342k.
  • Chee, K. K. Estimation of Molecular Weight Averages from Intrinsic Viscosity. J. Appl. Polym. Sci. 1985, 30, 1359–1363. DOI: 10.1002/app.1985.070300403.
  • McCarthy, K. J.; Burkhardt, C. W.; Parazak, D. P. Mark–Houwink–Sakurada Constants and Dilute Solution Behavior of Heterodisperse Poly(Acrylamide-co-Sodium Acrylate) in 0.5M and 1M NaCl. J. Appl. Polym. Sci. 1987, 33, 1699–1714. DOI: 10.1002/app.1987.070330523.
  • Iatridi, Z.; Bokias, G.; Kallitsis, J. K. Physicochemical Study of the Complexation of Poly(Acrylic Acid) with Cu2+ Ions in Water. J. Appl. Polym. Sci. 2008, 108, 769–776. DOI: 10.1002/app.27757.
  • Zhang, P.; Alsaifi, N. M.; Wu, J.; Wang, Z.-G. Salting-Out and Salting-In of Polyelectrolyte Solutions: A Liquid-State Theory Study. Macromolecules 2016, 49, 9720–9730. DOI: 10.1021/acs.macromol.6b02160.
  • Stojkov, G.; Niyazov, Z.; Picchioni, F.; Bose, R. K. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels 2021, 7, 255. DOI: 10.3390/gels7040255.
  • Nara, M.; Morii, H.; Tanokura, M. Coordination to Divalent Cations by Calcium-Binding Proteins Studied by FTIR Spectroscopy. Biochim. Biophys. Acta. 2013, 1828, 2319–2327. DOI: 10.1016/j.bbamem.2012.11.025.
  • Magalhães, A. S. G.; Almeida Neto, M. P.; Bezerra, M. N.; Ricardo, N. M. P. S.; Feitosa, J. P. A. Application of FTIR in the Determination of Acrylate Content in Poly(Sodium Acrylate-co-Acrylamide) Superabsorbent Hydrogels. Quím. Nova 2012, 35, 1464–1467. DOI: 10.1590/S0100-40422012000700030.
  • Murugan, R.; Mohan, S.; Bigotto, A. FTIR and Polarised Raman Spectra of Acrylamide and Polyacrylamide. J Korean Phys. Soc. 1998, 32, 505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.