87
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Polysulfide-ene polymerization of bisacrylamides and bismaleimides toward sulphur-rich polymers

, &
Pages 339-347 | Received 16 Feb 2024, Accepted 22 Mar 2024, Published online: 09 Apr 2024

References

  • Namazi, H. Polymers in Our Daily Life. Bioimpacts. 2017, 7, 73–74. DOI: 10.15171/bi.2017.09.
  • Silva, A. C. Q.; Silvestre, A. J. D.; Vilela, C.; Freire, C. S. R. Natural Polymers-Based Materials: A Contribution to a Greener Future. Molecules 2021, 27, 94. DOI: 10.3390/molecules27010094.
  • Binder, W. H. The past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science. Macromol. Rapid Comm 2019, 40, 1800610.
  • García-Martínez, J.-M.; Collar, E. P. Polymers and the Environment: Some Current Feature Trends. Polymers. (Basel) 2023, 15, 15–2093. DOI: 10.3390/polym15092093.
  • O'Rourke, K.; Wurzer, C.; Murray, J.; Doyle, A.; Doyle, K.; Griffin, C.; Christensen, B.; Brádaigh, C. M. Ó.; Ray, D. Diverted from Landfill: Reuse of Single-Use Plastic Packaging Waste. Polymers. (Basel) 2022, 14, 5485. DOI: 10.3390/polym14245485.
  • Mohanty, A. K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J. M.; Mielewski, D. F.; Narayan, R.; Netravali, A. N.; Misra, M. Sustainable Polymers. Nat. Rev. Methods Primers 2022, 2, 1–27.
  • Chyr, G.; DeSimone, J. M. Review of High-Performance Sustainable Polymers in Additive Manufacturing. Green Chem. 2023, 25, 453–466. DOI: 10.1039/D2GC03474C.
  • Miller, S. A. Sustainable Polymers: Opportunities for the Next Decade. ACS Macro Lett. 2013, 2, 550–554. DOI: 10.1021/mz400207g.
  • Wang, Z.; Ganewatta, M. S.; Tang, C. Sustainable Polymers from Biomass: Bridging Chemistry with Materials and Processing. Prog. Polym. Sci. 2020, 101, 101197. DOI: 10.1016/j.progpolymsci.2019.101197.
  • Lin, A. N.; Reimer, R. J.; Carter, D. M. Sulfur Revisited. J. Am. Acad. Dermatol. 1988, 18, 553–558. DOI: 10.1016/s0190-9622(88)70079-1.
  • Kutney, G. Sulfur: History, Technology, Applications & Industry; ChemTec Publishing, 2007.
  • Harrisson, P. Global Sulphur Market Outlook; CRU Fertil, 2013.
  • Maslin, M.; Van Heerde, L.; Day, S. Sulfur: A Potential Resource Crisis That Could Stifle Green Technology and Threaten Food Security as the World Decarbonises. Geographical Journal 2022, 188, 498–505. DOI: 10.1111/geoj.12475.
  • Boyd, D. A. Sulfur and Its Role in Modern Materials Science. Angew. Chem. Int. Ed. Engl. 2016, 55, 15486–15502. DOI: 10.1002/anie.201604615.
  • Worthington, M. J. H.; Kucera, R. L.; Chalker, J. M. Green Chemistry and Polymers Made from Sulfur. Green Chem. 2017, 19, 2748–2761. DOI: 10.1039/C7GC00014F.
  • Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nat. Chem. 2013, 5, 518–524. DOI: 10.1038/nchem.1624.
  • Wu, X.; Smith, J. A.; Petcher, S.; Zhang, B.; Parker, D. J.; Griffin, J. M.; Hasell, T. Catalytic Inverse Vulcanization. Nat. Commun. 2019, 10, 647. DOI: 10.1038/s41467-019-08430-8.
  • Zhang, B.; Gao, H.; Yan, P.; Petcher, S.; Hasell, T. Inverse Vulcanization below the Melting Point of Sulfur. Mater. Chem. Front. 2020, 4, 669–675. DOI: 10.1039/C9QM00606K.
  • Dale, J. J.; Stanley, J.; Dop, R. A.; Chronowska-Bojczuk, G.; Fielding, A. J.; Neill, D. R.; Hasell, T. Exploring Inverse Vulcanisation Mechanisms from the Perspective of Dark Sulfur. Eur. Polym. J. 2023, 195, 112198. DOI: 10.1016/j.eurpolymj.2023.112198.
  • Wręczycki, J.; Bieliński, D. M.; Kozanecki, M.; Maczugowska, P.; Mlostoń, G. Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8). Materials (Basel) 2020, 13, 2597. DOI: 10.3390/ma13112597.
  • Wręczycki, J.; Bieliński, D. M.; Kozanecki, M.; Strzelec, K.; Mlostoń, G. An Efficient Ring-Opening Copolymerization of Thiiranes with Elemental Sulfur in the Presence of the Fluoride Anion. Polymer 2023, 267, 125638. DOI: 10.1016/j.polymer.2022.125638.
  • Yang, H.; Huang, J.; Song, Y.; Yao, H.; Huang, W.; Xue, X.; Jiang, L.; Jiang, Q.; Jiang, B.; Zhang, G. Anionic Hybrid Copolymerization of Sulfur with Acrylate: Strategy for Synthesis of High-Performance Sulfur-Based Polymers. J. Am. Chem. Soc. 2023, 145, 14539–14547. DOI: 10.1021/jacs.3c04746.
  • Jeon, Y.; Choi, J.; Seo, D.; Jung, S. H.; Lim, J. Low Birefringence and Low Dispersion Aliphatic Thermosets with a High and Tunable Refractive Index. Polym. Chem. 2023, 14, 1117–1123. DOI: 10.1039/D2PY01327D.
  • Penczek, S.; Ślazak, R.; Duda, A. Anionic Copolymerisation of Elemental Sulphur. Nature 1978, 273, 738–739. DOI: 10.1038/273738a0.
  • Steudel, R. The Chemistry of Organic Polysulfanes R − Sn − R (n > 2). Chem. Rev. 2002, 102, 3905–3945. DOI: 10.1021/cr010127m.
  • Patrick, J. C. The Formation of High Polymers by Condensation between Metallic Poly-Sulphides and Dihalogenated Hydrocarbons and Ethers. Trans. Faraday Soc. 1936, 32, 347–357. DOI: 10.1039/tf9363200347.
  • Jorczak, J. S.; Fettes, E. M. Polysulfide Liquid Polymers. Ind. Eng. Chem. 1951, 43, 324–328. DOI: 10.1021/ie50494a022.
  • Kishore, K.; Ganesh, K. Synthesis, Characterization, and Thermal Degradation Studies on Group via Derived Weak-Link Polymers. Macromolecules 1993, 26, 4700–4705. DOI: 10.1021/ma00069a044.
  • Zhang, Y.; Peng, Y.; Wang, Y.; Li, J.; Li, H.; Zeng, J.; Wang, J.; Hwang, B. J.; Zhao, J. High Sulfur-Containing Carbon Polysulfide Polymer as a Novel Cathode Material for Lithium-Sulfur Battery. Sci. Rep. 2017, 7, 11386. DOI: 10.1038/s41598-017-11922-6.
  • Kalaee, M. R.; Famili, M. H. N.; Mortezaei, M.; Zeeb, M. Polymerization of Ethylene Dichloride and Sodium Tetrasulfide: Synthesis and Kinetic Studies. J. Sulfur Chem. 2010, 31, 247–253. DOI: 10.1080/17415993.2010.499565.
  • Meisner, Q. J.; Jiang, S.; Cao, P.; Glossmann, T.; Hintennach, A.; Zhang, Z. An in Situ Generated Polymer Electrolyte via Anionic Ring-Opening Polymerization for Lithium–Sulfur Batteries. J. Mater. Chem. A 2021, 9, 25927–25933. DOI: 10.1039/D1TA08244B.
  • Arslan, M. Sulfur-Rich Polymers from Elemental Sulfur-Derived Polysulfide Salts and Bisepoxides. Eur. Polym. J. 2023, 194, 112131. DOI: 10.1016/j.eurpolymj.2023.112131.
  • Dale, J. J.; Smith, M. W.; Hasell, T. Adv. Funct. Mater. 2314567. Early view. DOI: 10.1002/adfm.202314567.
  • Lim, J.; Jung, U.; Joe, W. T.; Kim, E. T.; Pyun, J.; Char, K. High Sulfur Content Polymer Nanoparticles Obtained from Interfacial Polymerization of Sodium Polysulfide and 1,2,3-Trichloropropane in Water. Macromol. Rapid Commun. 2015, 36, 1103–1107. DOI: 10.1002/marc.201500006.
  • Edraki, M.; Sheydaei, M.; Alinia-Ahandani, E.; Nezhadghaffar-Borhani, E. Polyvinyl Chloride: Chemical Modification and Investigation of Structural and Thermal Properties. J. Sulfur Chem. 2021, 42, 397–409. DOI: 10.1080/17415993.2021.1895996.
  • Shin, H.; Kim, J.; Kim, D.; Nguyen, V. H.; Lee, S.; Han, S.; Lim, J.; Char, K. Aqueous “Polysulfide-Ene” Polymerization for Sulfur-Rich Nanoparticles and Their Use in Heavy Metal Ion Remediation. J. Mater. Chem. A 2018, 6, 23542–23549. DOI: 10.1039/C8TA05457F.
  • O'Brien, J.; Lee, S.-H.; Onogi, S.; Shea, K. J. Engineering the Protein Corona of a Synthetic Polymer Nanoparticle for Broad-Spectrum Sequestration and Neutralization of Venomous Biomacromolecules. J. Am. Chem. Soc. 2016, 138, 16604–16607. DOI: 10.1021/jacs.6b10950.
  • Devaraju, S.; Vengatesan, M. R.; Selvi, M.; Alagar, M. Thermal and Dielectric Properties of Newly Developed Linear Aliphatic-Ether Linked Bismaleimide-Polyhedral Oligomeric Silsesquioxane (POSS-AEBMI) Nanocomposites. J. Therm. Anal. Calorim. 2014, 117, 1047–1063. DOI: 10.1007/s10973-014-3892-2.
  • Rosén, E.; Tegman, R.; Lindberg, B.; Svensson, S.; Koskikallio, J.; Kachi, S. A Preparative and X-Ray Powder Diffraction Study of the Polysulfides Na2S2, Na2S4 and Na2S5. Acta Chem. Scand 1971, 25, 3329–3336. DOI: 10.3891/acta.chem.scand.25-3329.
  • Wołczański, G.; Gil, W.; Cichos, J.; Lisowski, M.; Stefanowicz, P. Alkyl Thiocyanurates as Thioester Mimetics. Transthioesterification and Ligation Reactions with High Potential in Dynamic Covalent Chemistry. J. Org. Chem. 2023, 88, 8192–8202. DOI: 10.1021/acs.joc.3c00200.
  • Kéki, S.; Zsuga, M.; Kuki, A. Theoretical Size Distribution in Linear Step-Growth Polymerization for a Small Number of Reacting Species. J. Phys. Chem. B 2013, 117, 4151–4155. DOI: 10.1021/jp401238m.
  • Parreño, R. P.; Liu, Y.-L.; Beltran, A. B. Effect on Thermal Stability of Microstructure and Morphology of Thermally-Modified Electrospun Fibers of Polybenzoxazines (PBz) Blended with Sulfur Copolymers (SDIB). RSC Adv. 2021, 11, 10002–10009. DOI: 10.1039/d1ra00705j.
  • Ghumman, A. S. M.; Shamsuddin, R.; Nasef, M. M.; Krivoborodov, E. G.; Ahmad, S.; Zanin, A. A.; Mezhuev, Y. O.; Abbasi, A. A Degradable Inverse Vulcanized Copolymer as a Coating Material for Urea Produced under Optimized Conditions. Polymers. (Basel) 2021, 13, 4040. DOI: 10.3390/polym13224040.
  • Arslan, M.; Ceylan, O.; Arslan, R.; Tasdelen, M. A. Facile UV-Induced Covalent Modification and Crosslinking of Styrene–Isoprene–Styrene Copolymer via Paterno–Büchi [2 + 2] Photocycloaddition. RSC Adv. 2021, 11, 8585–8593. DOI: 10.1039/d1ra00033k.
  • Arslan, M. Fabrication and Reversible Disulfide Functionalization of PEGylated Chitosan-Based Hydrogels: Platforms for Selective Immobilization and Release of Thiol-Containing Molecules. Eur. Polym. J. 2020, 126, 109543. DOI: 10.1016/j.eurpolymj.2020.109543.
  • Arslan, M.; Gevrek, T. N.; Sanyal, R.; Sanyal, A. Fabrication of Poly(Ethylene Glycol)-Based Cyclodextrin Containing Hydrogels via Thiol-Ene Click Reaction. Eur. Polym. J. 2015, 62, 426–434. DOI: 10.1016/j.eurpolymj.2014.08.018.
  • Arslan, M.; Gevrek, T. N.; Sanyal, A.; Sanyal, R. Cyclodextrin Mediated Polymer Coupling via Thiol–Maleimide Conjugation: Facile Access to Functionalizable Hydrogels. RSC Adv 2014, 4, 57834–57841. DOI: 10.1039/C4RA12408A.
  • Environment, U. N. Global Mercury Assessment 2018. UNEP - UN Environment Programme; 2019. http://www.unep.org/resources/publication/global-mercury-assessment-2018.
  • Jay, J. A.; Morel, F. M. M.; Hemond, H. F. Mercury Speciation in the Presence of Polysulfides. Environ. Sci. Technol. 2000, 34, 2196–2200. DOI: 10.1021/es9911115.
  • Pirayesh, A.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Najafi, F. Polysulfide Polymers: Synthesis, Blending, Nanocomposites, and Applications. Polym. Rev. 2019, 59, 124–148. DOI: 10.1080/15583724.2018.1492616.
  • Müller, F. G.; Lisboa, L. S.; Chalker, J. M. Inverse Vulcanized Polymers for Sustainable Metal Remediation. Adv. Sustainable Syst. 2023, 7, 2300010. DOI: 10.1002/adsu.202300010.
  • Crockett, M. P.; Evans, A. M.; Worthington, M. J. H.; Albuquerque, I. S.; Slattery, A. D.; Gibson, C. T.; Campbell, J. A.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M. Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial by-Products and Its Use in Removing Toxic Metals from Water and Soil. Angew. Chem. Int. Ed. Engl. 2016, 55, 1714–1718. DOI: 10.1002/anie.201508708.
  • Worthington, M. J. H.; Kucera, R. L.; Albuquerque, I. S.; Gibson, C. T.; Sibley, A.; Slattery, A. D.; Campbell, J. A.; Alboaiji, S. F. K.; Muller, K. A.; Young, J.; et al. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chemistry 2017, 23, 16219–16230. DOI: 10.1002/chem.201702871.
  • Berk, H.; Kaya, M.; Cihaner, A. Thermally Highly Stable Polyhedral Oligomeric Silsesquioxane (POSS)-Sulfur Based Hybrid Inorganic/Organic Polymers: Synthesis, Characterization and Removal of Mercury Ion. Polym. Chem. 2022, 13, 5152–5158. DOI: 10.1039/D2PY00761D.
  • Worthington, M. J. H.; Mann, M.; Muhti, I. Y.; Tikoalu, A. D.; Gibson, C. T.; Jia, Z.; Miller, A. D.; Chalker, J. M. Modelling Mercury Sorption of a Polysulfide Coating Made from Sulfur and Limonene. Phys. Chem. Chem. Phys. 2022, 24, 12363–12373. DOI: 10.1039/d2cp01903e.
  • Thielke, M. W.; Bultema, L. A.; Brauer, D. D.; Richter, B.; Fischer, M.; Theato, P. Rapid Mercury(II) Removal by Electrospun Sulfur Copolymers. Polymers. (Basel) 2016, 8, 266. DOI: 10.3390/polym8070266.
  • Mann, M.; Zhang, B.; Tonkin, S. J.; Gibson, C. T.; Jia, Z.; Hasell, T.; Chalker, J. M. Processes for Coating Surfaces with a Copolymer Made from Sulfur and Dicyclopentadiene. Polym. Chem 2022, 13, 1320–1327. DOI: 10.1039/D1PY01416A.
  • Eder, M. L.; Call, C. B.; Jenkins, C. L. Utilizing Reclaimed Petroleum Waste to Synthesize Water-Soluble Polysulfides for Selective Heavy Metal Binding and Detection. ACS Appl. Polym. Mater 2022, 4, 1110–1116. DOI: 10.1021/acsapm.1c01536.
  • Pople, J. M. M.; Nicholls, T. P.; Pham, L. N.; Bloch, W. M.; Lisboa, L. S.; Perkins, M. V.; Gibson, C. T.; Coote, M. L.; Jia, Z.; Chalker, J. M. Electrochemical Synthesis of Poly(Trisulfides). J. Am. Chem. Soc. 2023, 145, 11798–11810. DOI: 10.1021/jacs.3c03239.
  • Deng, X.; Dop, R. A.; Cai, D.; Neill, D. R.; Hasell, T. Adv. Funct. Mater. 2311647. Early view. DOI: 10.1002/adfm.202311647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.