153
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Supramolecular fluorescence sensor array based on calixarenes for discrimination of nucleotides and their phosphate derivatives

, , , , , , , & show all
Pages 168-178 | Received 03 Oct 2023, Accepted 09 Nov 2023, Published online: 21 Nov 2023

References

  • Kitadai N, Maruyama S. Origins of building blocks of life: a review. Geosci Front. 2018;94(4):1117–1153. doi: 10.1016/j.gsf.2017.07.007
  • Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–551. doi: 10.1038/s41573-019-0019-2
  • Ke R, Xu Q-C, Li C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;424(4):384–392. doi: 10.1002/cbin.10915
  • Giuliani AL, Sarti AC, Virgilio FD. Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett. 2019;205:16–24. doi: 10.1016/j.imlet.2018.11.006
  • Jurecka A, Tylki-Szymanska A. Inborn errors of purine and pyrimidine metabolism: A guide to diagnosis. Mol Genet Metab. 2022;1363(3):164–176. doi: 10.1016/j.ymgme.2022.02.007
  • Yan Q, Ding X-Y, Chen Z-H, et al. pH-Regulated optical performances in Organic/Inorganic hybrid: a dual-mode sensor array for pattern-recognition-based biosensing. Anal Chem. 2018;9017:10536–10542. doi: 10.1021/acs.analchem.8b02603
  • Wang Y-Q, Fan P-P, Zhang S-Y, et al. Discrimination of ribonucleoside mono-, Di-, and triphosphates using an Engineered Nanopore. ACS Nano. 2022;1612(12):21356–21365. doi: 10.1021/acsnano.2c09662
  • Kim HN, Moon JH, Kim SK, et al. Fluorescent Sensing of Triphosphate Nucleotides via Anthracene Derivatives. J Org Chem. 2011;7610:3805–3811. doi: 10.1021/jo2000836
  • Seidel A, Brunner S, Seidel P, et al. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer. 2006;9411(11):1726–1733. doi: 10.1038/sj.bjc.6603164
  • Menezes CB, Frasson AP, Meirelles LC, et al. Adenosine, but not guanosine, protects vaginal epithelial cells from trichomonas vaginalis cytotoxicity. Microbes Infect. 2017;192(2):122–131. doi: 10.1016/j.micinf.2016.11.001
  • Zhang M-Q, Yang B, Zhang J-Y, et al. Monitoring the dynamic regulation of the mitochondrial GTP-to-GDP ratio with a genetically encoded fluorescent biosensor. Angew Chem Int Ed. 2022;6133(33):e202201266. doi: 10.1002/anie.202201266
  • Jhaveri SD, Kirby R, Conrad R, et al. Designed signaling aptamers that Transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc. 2000;12211:2469–2473. doi: 10.1021/ja992393b
  • Michaud M, Jourdan E, Ravelet C, et al. Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers. Anal Chem. 2004;764:1015–1020. doi: 10.1021/ac035090f
  • Yoshida W, Sode K, Ikebukuro K. Aptameric Enzyme Subunit for Biosensing Based on Enzymatic Activity Measurement. Anal Chem. 2006;7810(10):3296–3303. doi: 10.1021/ac060254o
  • Huang Y-F, Chang H-T. Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser Desorption/Ionization Mass spectrometry. Anal Chem. 2007;7913(13):4852–4859. doi: 10.1021/ac070023x
  • Lai RY, Plaxco KW, Heeger AJ. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem. 2007;791(1):229–233. doi: 10.1021/ac061592s
  • Zhang M, Guo S-M, Li Y-R, et al. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Chem Commun. 2012;4844:5488–5490. doi: 10.1039/c2cc31626a
  • Wang M-M, Chen L-L, Pan S-N, et al. Molecular evolution and characterization of novel Seneca Valley virus (SVV) strains in South China. Infect Genet Evol. 2019;69:1–7. doi: 10.1016/j.meegid.2019.01.004
  • Feng H-T, Wong N, Wee S, et al. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis. J Chromatogr B. 2008;8701(1):131–134. doi: 10.1016/j.jchromb.2008.05.038
  • Cohen S, Jordheim LP, Megherbi M, et al. Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy: a review. J Chromatogr B. 2010;87822(22):1912–1928. doi: 10.1016/j.jchromb.2010.05.016
  • Strezsak SR, Beuning PJ, Skizim NJ. Versatile separation of nucleotides from bacterial cell lysates using strong anion exchange chromatography. J Chromatogr B. 2022;1188:123044. doi: 10.1016/j.jchromb.2021.123044
  • Werner A, Schneider W, Siems W, et al. Ion-pair reversed phase HPLC determination of nucleotides, nucleosides and nucleobases — application to nucleotide metabolism in hepatocytes. Chromatographia. 1989;2711(11–12):639–643. doi: 10.1007/BF02258995
  • Zhou T, Lucy CA. Hydrophilic interaction chromatography of nucleotides and their pathway intermediates on titania. J Chromatogr A. 2008;11871(1–2):87–93. doi: 10.1016/j.chroma.2008.02.027
  • Yuan D, Yan H-H, Liu J-H, et al. A fast and colorimetric sensor array for the discrimination of ribonucleotides in human urine samples by gold nanorods. Chinese Chem Lett. 2020;312(2):455–458. doi: 10.1016/j.cclet.2019.07.067
  • You L, Zha D-J, Anslyn EV. Recent advances in Supramolecular Anal Chem using optical sensing. Chem Rev. 2015;11515:7840–7892. doi: 10.1021/cr5005524
  • Geng Y-Y, Peveler WJ, Rotello VM. Array-based “Chemical nose” sensing in diagnostics and drug discovery. Angew Chem Int Ed. 2019;5816(16):5190–5200. doi: 10.1002/anie.201809607
  • Liu M-W, Zhang Y-J, Wang J-C, et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat Commun. 2022;131(1):79. doi: 10.1038/s41467-021-27672-z
  • Peveler WJ, Yazdani M, Rotello VM. Selectivity and specificity: pros and cons in sensing. ACS Sens. 2016;111:1282–1285. doi: 10.1021/acssensors.6b00564
  • Wright AT, Anslyn EV. Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev. 2006;351(1):14–28. doi: 10.1039/B505518K
  • Nguyen BT, Anslyn EV. Indicator–displacement assays. Coord Chem Rev. 2006;25023-24(23–24):3118–3127. doi: 10.1016/j.ccr.2006.04.009
  • Dsouza RN, Pischel U, Nau WM. Fluorescent dyes and their Supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev. 2011;111(12):7941–7980. doi: 10.1021/cr200213s
  • Sedgwick AC, Brewster JT, Wu T-H, et al. Indicator displacement assays (IDAs): the past, present and future. Chem Soc Rev. 2021;501:9–38. doi: 10.1039/C9CS00538B
  • Webber MJ, Appel EA, Meijer EW, et al. Supramolecular biomaterials. Nat Mater. 2016;151(1):13–26. doi: 10.1038/nmat4474
  • Liu Z-C, Nalluri SKM, Stoddart JF. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev. 2017;469(9):2459–2478. doi: 10.1039/C7CS00185A
  • Lehn JM. Supramolecular Chemistry. Science. 1993;2605115(5115):1762–1763. doi: 10.1126/science.8511582
  • Tian J-H, Hu X-Y, Hu Z-Y, et al. A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems. Nat Commun. 2022;131(1):4293. doi: 10.1038/s41467-022-31986-x
  • Geng W-C, Zheng Z, Guo D-S. Supramolecular design based activatable magnetic resonance imaging. Chem Commun. 2021;2(2):20200059. doi: 10.1002/VIW.20200059
  • Tian J-H, Lin Y-L, Li J-J, et al. Supramolecular Fluorescence Sensing for Quality Evaluation of Traditional Chinese Medicine. Arab J Chem. 2023;16(8):104974. doi: 10.1016/j.arabjc.2023.104974
  • Hu X-Y, Hu Z-Y, Tian J-H, et al. A heteromultivalent host-guest sensor array for cell recognition and discrimination. Chem Commun. 2022;5895:13198–13201. doi: 10.1039/D2CC04963E
  • Liu Y-L, Bonizzoni M. A supramolecular sensing array for qualitative and quantitative analysis of organophosphates in water. J Am Chem Soc. 2014;13640(40):14223–14229. doi: 10.1021/ja507905r
  • Minami T, Esipenko NA, Akdeniz A, et al. Multianalyte sensing of addictive over-the-counter (OTC) drugs. J Am Chem Soc. 2013;13540:15238–15243. doi: 10.1021/ja407722a
  • Mei Y-X, Zhang Q-W, Gu Q-Y, et al. Pillar[5]arene-based fluorescent sensor array for Biosensing of Intracellular Multi-neurotransmitters through host-guest recognitions. J Am Chem Soc. 2022;1445:2351–2359. doi: 10.1021/jacs.1c12959
  • Li R, Liu N, Liu R, et al. Calixarene: A Supramolecular Material for Treating Cancer. Curr Drug Deliv. 2024;212(2):184–192. doi: 10.2174/1567201820666230417084210
  • Shinkai S. Calixarenes - the third generation of supramolecules. Tetrahedron. 1993;4940(40):8933–8968. doi: 10.1016/S0040-4020(01)91215-3
  • Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci. 2019;269:187–202. doi: 10.1016/j.cis.2019.04.004
  • Kongor AR, Mehta VA, Modi KM, et al. Calix-Based Nanoparticles: A Review. Top Curr Chem. 2016;3743(3):28. doi: 10.1007/s41061-016-0029-z
  • Calixarenes BV. Macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed. 1995;347(7):713–745. doi: 10.1002/anie.199507131
  • Zhang F, Sun Y, Tian D-M, et al. Selective molecular recognition on calixarene-functionalized 3D surfaces. Chem Commun. 2016;5286:12685–12693. doi: 10.1039/C6CC05876K
  • Song M-M, Sun Z-Y, Han C-P, et al. Design and fabrication of a biomimetic nanochannel for highly sensitive arginine response in serum samples. Chem: Eur J. 2026;14(2026):7987–7993. doi: 10.1002/chem.201400138
  • Duan Y-M, Tian H-W, Li H-B, et al. A host-dye complex for sensitive fluorescence detection and clearing of spermine in cells. Sensor Actuat B-Chem. 2023;386:133757. doi: 10.1016/j.snb.2023.133757
  • Wu J-J, Chen F-Y, Han B-B, et al. CASTING: a potent Supramolecular strategy to cytosolically deliver STING agonist for cancer immunotherapy and SARS-CoV-2 vaccination. CCS Chem. 2023;5(4):885–901. doi: 10.31635/ccschem.022.202201859
  • Hou X-X, Chang Y-X, Yue Y-X, et al. Supramolecular Radiosensitizer Based on Hypoxia-Responsive Macrocycle. Adv Sci. 2022;96(6):2104349. doi: 10.1002/advs.202104349
  • Wang H, Xu X-X, Pan Y-C, et al. Recognition and Removal of Amyloid-β by a heteromultivalent macrocyclic coassembly: a potential strategy for the treatment of Alzheimer’s disease. Adv Mater. 2021;334:2006483. doi: 10.1002/adma.202006483
  • Pan Y-C, Wang H, Xu X-X, et al. Coassembly of macrocyclic amphiphiles for anti-β-amyloid therapy of Alzheimer’s disease. CCS Chem. 2021;3(9):2485–2497. doi: 10.31635/ccschem.020.202000561
  • Geng W-C, Zheng Z, Jiang H-F, et al. Nucleotide Recognition by a Guanidinocalixarene Receptor in Aqueous Solution. Chem Res Chin U. 2023;391(1):144–150. doi: 10.1007/s40242-022-2204-9
  • Kramer J, Kang R, Grimm LM, et al. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev. 2022;1223:3459–3636. doi: 10.1021/acs.chemrev.1c00746
  • Zhang Z, Yue Y-X, Li Q-S, et al. Design of calixarene-based ICD inducer for efficient cancer immunotherapy. Adv Funct Mater. 2023;3316(16):2213967. doi: 10.1002/adfm.202213967
  • Zheng Z, Geng W-C, Gao J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene. Chem Sci. 2018;98:2087–2091. doi: 10.1039/C7SC04989G
  • Gao J, Li J, Geng W-C, et al. Biomarker displacement activation: a General host–guest strategy for targeted phototheranostics in vivo. J Am Chem Soc. 2018;14014:4945–4953. doi: 10.1021/jacs.8b02331
  • Geng W-C, Ye Z-J, Zheng Z, et al. Supramolecular bioimaging through signal amplification by combining indicator displacement assay with Förster resonance energy transfer. Angew Chem Int Ed Engl. 2021;60(36):19614–19619. doi: 10.1002/anie.202104358
  • Geng W-C, Liu Y-C, Wang Y-Y, et al. A self-assembled white-light-emitting system in aqueous medium based on a macrocyclic amphiphile. Chem Commun. 2017;532:392–395. doi: 10.1039/C6CC09079F
  • Zhang Y-P, Yu H-J, Chai S-W, et al. Noninvasive and Individual-Centered Monitoring of Uric Acid for Precaution of Hyperuricemia via Optical Supramolecular Sensing. Adv Sci. 2022;918(18):e2104463. doi: 10.1002/advs.202104463
  • Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res. 2001;1(6):407–418. doi: 10.1016/S1566-2772(01)00019-6
  • Evans ML, McCrimmon RJ, Flanagan DE, et al. Hypothalamic ATP-sensitive K + channels play a key role in sensing hypoglycemia and triggering counterregulatory epinephrine and glucagon responses. Diabetes. 2004;5310(10):2542–2551. doi: 10.2337/diabetes.53.10.2542
  • Zhang C, Rissman RA, Feng J. Characterization of ATP alternations in an Alzheimer’s disease transgenic mouse model. J Alzheimers Dis. 2015;44(2):375–378. doi: 10.3233/JAD-141890
  • Milone M, Wong L-J. Diagnosis of mitochondrial myopathies. Mol Genet Metab. 2013;1101(1–2):35–41. doi: 10.1016/j.ymgme.2013.07.007
  • Haythorne E, Lloyd M, Walsby-Tickle J, et al. Altered glycolysis triggers impaired mitochondrial metabolism and mTORC1 activation in diabetic β-cells. Nat Commun. 2022;131(1):6754. doi: 10.1038/s41467-022-34095-x
  • Schmitt M, Ceteci F, Gupta J, et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation. Nature. 2022;6127939(7939):347–353. doi: 10.1038/s41586-022-05426-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.