200
Views
0
CrossRef citations to date
0
Altmetric
First Generation Supramolecular Chemists

Design and applications of multi-fluorophore metallacycles and metallacages

, , &

References

  • Lavis LD, Raines RT Bright building blocks for chemical biology. ACS Chem Biol. 2014;9(4):855–866. 10.1021/cb500078u
  • Lavis LD, Raines RT Bright ideas for chemical biology. ACS Chem Biol. 2008;3(3):142–155. 10.1021/cb700248m
  • Frangioni JV In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7(5):626–634. 10.1016/j.cbpa.2003.08.007
  • Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1(1). doi: 10.1038/s41551-016-0010
  • Gupta G, Sun Y, Das A, et al. BODIPY based metal-organic macrocycles and frameworks: recent therapeutic developments. Coord Chem Rev. 2022;452. 452 10.1016/j.ccr.2021.214308
  • Jin T, Huang C, Cui M, et al. Supramolecular ensembles modified by near-infrared dyes and their biological applications. J Mater Chem B. 2020;8(47):10686–10699.10.1039/D0TB01829E
  • Li X, Lee S, Yoon J Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev. 2018;47(4):1174–1188. 10.1039/C7CS00594F
  • Jin T, Cheng D, Jiang G, et al. Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact Mater. 2022;14:42–51. 10.1016/j.bioactmat.2021.12.009
  • Zhao J, Zhou Z, Li G, et al. Light-emitting self-assembled metallacages. Natl Sci Rev. 2021;8(6):nwab045. 10.1093/nsr/nwab045
  • Saha ML, Yan X, Stang PJ Photophysical properties of organoplatinum(II) compounds and derived self-assembled metallacycles and Metallacages: fluorescence and its applications. Acc Chem Res. 2016;49(11):2527–2539. 10.1021/acs.accounts.6b00416
  • Zhu J, Liu X, Huang J, et al. Our expedition in the construction of fluorescent supramolecular metallacycles. Chin Chem Lett. 2019;30(10):1767–1774. 10.1016/j.cclet.2019.08.027
  • Ling Q, Cheng T, Tan S, et al. Fluorescence-resonance energy transfer (FRET) within the fluorescent metallacycles. Chin Chem Lett. 2020;31(11):2884–2890. 10.1016/j.cclet.2020.08.020
  • Dou W-T, Yang C-Y, Hu L-R, et al. Metallacages and covalent cages for biological imaging and therapeutics. ACS Mater Lett. 2023;5(4):1061–1082. 10.1021/acsmaterialslett.2c01147
  • Mei F, Lin H, Hu L, et al. Homogeneous, heterogeneous, and enzyme catalysis in microfluidics droplets. Smart Molecules. 2023;1(1):e20220001.10.1002/smo.20220001
  • Zhou L, Yang C, Dou W, et al. Supramolecular flow chemistry: Construction of multiscale supramolecular assemblies by micro/nanofluidic techniques. Chin Chem Lett. 2023:108669. 35 1 10.1016/j.cclet.2023.108669
  • Chakrabarty R, Mukherjee PS, Stang PJ Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem Rev. 2011;111(11):6810–6918. 10.1021/cr200077m
  • Sun Y, Chen C, Liu J, et al. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem Soc Rev. 2020;49(12):3889–3919. 10.1039/D0CS00038H
  • Fujita M, Tominaga M, Hori A, et al. Coordination assemblies from a Pd(II)-cornered square complex. Acc Chem Res. 2005;38(4):369–378. 10.1021/ar040153h
  • Northrop BH, Zheng Y-R, Chi K-W, et al. Self-organization in coordination-driven self-assembly. Acc Chem Res. 2009;42(10):1554–1563. 10.1021/ar900077c
  • Hofmeier H, Schubert US Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem Soc Rev. 2004;33(6):373–399. 10.1039/B400653B
  • Han M, Engelhard DM, Clever GH Self-assembled coordination cages based on banana-shaped ligands. Chem Soc Rev. 2014;43(6):1848–1860. 10.1039/C3CS60473J
  • Stang PJ, Olenyuk B. Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and Polyhedra. Acc Chem Res. 1997;30(12):502–518. 10.1021/ar9602011
  • Holliday BJ, Mirkin CA Strategies for the construction of supramolecular compounds through coordination Chemistry. Angew Chem Int Ed. 2001;40(11):2022–2043. 10.1002/1521-3773(20010601)40:11<2022:AID-ANIE2022>3.0.CO;2-D
  • McConnell AJ, Wood CS, Neelakandan PP, et al. Stimuli-Responsive Metal–Ligand Assemblies. Chem Rev. 2015;115(15):7729–7793. 10.1021/cr500632f
  • Olenyuk B, Whiteford JA, Fechtenkötter A, et al. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature. 1999;398(6730):796–799.10.1038/19740
  • Fujita D, Ueda Y, Sato S, et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature. 2016;540(7634):563–566.10.1038/nature20771
  • Das N, Mukherjee PS, Arif AM, et al. Facile self-assembly of predesigned neutral 2D Pt-macrocycles via a New class of rigid oxygen donor linkers. J Am Chem Soc. 2003;125(46):13950–13951. 10.1021/ja037788g
  • Leininger S, Olenyuk B, Stang PJ Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev. 2000;100(3):853–908. 10.1021/cr9601324
  • Cook TR, Stang PJ Recent developments in the preparation and Chemistry of metallacycles and metallacages via coordination. Chem Rev. 2015;115(15):7001–7045. 10.1021/cr5005666
  • Sun Q-F, Iwasa J, Ogawa D, et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science. 2010;328(5982):1144–1147.10.1126/science.1188605
  • Oliveri CG, Ulmann PA, Wiester MJ, et al. Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. Acc Chem Res. 2008;41(12):1618–1629. 10.1021/ar800025w
  • Zarra S, Wood DM, Roberts DA, et al. Molecular containers in complex chemical systems. Chem Soc Rev. 2015;44(2):419–432. 10.1039/C4CS00165F
  • Smulders MMJ, Riddell IA, Browne C, et al. Building on architectural principles for three-dimensional metallosupramolecular construction. Chem Soc Rev. 2013;42(4):1728–1754. 10.1039/C2CS35254K
  • Li G-L, Zhuo Z, Wang B, et al. Constructing π-stacked supramolecular cage based hierarchical self-assemblies via π···π stacking and hydrogen bonding. J Am Chem Soc. 2021;143(29):10920–10929. 10.1021/jacs.1c01161
  • Gao W-X, Feng H-J, Guo B-B, et al. Coordination-directed construction of molecular links. Chem Rev. 2020;120(13):6288–6325. 10.1021/acs.chemrev.0c00321
  • Dong J, Liu Y, Cui Y. Artificial metal–peptide assemblies: bioinspired assembly of peptides and metals through space and across length scales. J Am Chem Soc. 2021;143(42):17316–17336.10.1021/jacs.1c08487
  • Jing X, He C, Yang Y, et al. A metal–organic tetrahedron as a Redox vehicle to encapsulate organic dyes for photocatalytic proton reduction. J Am Chem Soc. 2015;137(11):3967–3974. 10.1021/jacs.5b00832
  • Pan M, Liao W-M, Yin S-Y, et al. Single-phase white-light-emitting and photoluminescent color-tuning coordination assemblies. Chem Rev. 2018;118(18):8889–8935. 10.1021/acs.chemrev.8b00222
  • Zheng J, Lu Z, Wu K, et al. Coinage-metal-based cyclic trinuclear complexes with metal–metal interactions: theories to experiments and structures to functions. Chem Rev. 2020;120(17):9675–9742. 10.1021/acs.chemrev.0c00011
  • Li Y, Huo G-F, Liu B, et al. Giant Concentric Metallosupramolecule with Aggregation-Induced Phosphorescent Emission. J Am Chem Soc. 2020;142(34):14638–14648. 10.1021/jacs.0c06680
  • Chen L-J, Yang H-B Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc Chem Res. 2018;51(11):2699–2710. 10.1021/acs.accounts.8b00317
  • Wang L-J, Li X, Bai S, et al. Self-assembly, structural transformation, and guest-binding properties of supramolecular assemblies with triangular metal–metal bonded units. J Am Chem Soc. 2020;142(5):2524–2531. 10.1021/jacs.9b12309
  • Shi B, Li X, Chai Y, et al. Platinum metallacycle-based molecular recognition: establishment and application in spontaneous formation of a [2]Rotaxane with light-harvesting property. Angew Chem Int Ed. 2023;62(31):e202305767.10.1002/anie.202305767
  • Ueda M, Kishida N, Catti L, et al. Caged bulky organic dyes in a polyaromatic framework and their spectroscopic peculiarities. Chem Sci. 2022;13(29):8642–8648. 10.1039/D2SC02308C
  • Li C, Nian H, Dong Y, et al. Tetraphenylethene-based platinum(II) bis-triangular dicycles with tunable emissions. Inorg Chem. 2020;59(8):5713–5720. 10.1021/acs.inorgchem.0c00505
  • Cook TR, Vajpayee V, Lee MH, et al. Biomedical and biochemical applications of self-assembled metallacycles and Metallacages. Acc Chem Res. 2013;46(11):2464–2474. 10.1021/ar400010v
  • Sepehrpour H, Fu W, Sun Y, et al. Biomedically relevant self-assembled metallacycles and Metallacages. J Am Chem Soc. 2019;141(36):14005–14020. 10.1021/jacs.9b06222
  • O’Neil EJ, Smith BD Anion recognition using dimetallic coordination complexes. Coord Chem Rev. 2006;250(23):3068–3080. 10.1016/j.ccr.2006.04.006
  • Brown CJ, Toste FD, Bergman RG, et al. Supramolecular catalysis in metal–ligand cluster hosts. Chem Rev. 2015;115(9):3012–3035. 10.1021/cr4001226
  • Pluth MD, Raymond KN Reversible guest exchange mechanisms in supramolecular host–guest assemblies. Chem Soc Rev. 2007;36(2):161–171. 10.1039/B603168B
  • Qin Y, Chen L-J, Zhang Y, et al. Photoswitchable förster resonance energy transfer (FRET) within a heterometallic ir–Pt macrocycle. Chem Comm. 2019;55(74):11119–11122. 10.1039/C9CC05377H
  • Chang X, Zhou Z, Shang C, et al. Coordination-driven self-assembled metallacycles incorporating pyrene: fluorescence mutability, tunability, and aromatic amine sensing. J Am Chem Soc. 2019;141(4):1757–1765. 10.1021/jacs.8b12749
  • Ronson TK, Carpenter JP, Nitschke JR Dynamic optimization of guest binding in a library of diastereomeric heteroleptic coordination cages. Chem. 2022;8(2):557–568.10.1016/j.chempr.2021.12.017
  • Hong CM, Morimoto M, Kapustin EA, et al. Deconvoluting the role of charge in a supramolecular catalyst. J Am Chem Soc. 2018;140(21):6591–6595. 10.1021/jacs.8b01701
  • Lee H, Tessarolo J, Langbehn D, et al. Light-powered dissipative assembly of diazocine coordination cages. J Am Chem Soc. 2022;144(7):3099–3105. 10.1021/jacs.1c12011
  • Hu Y-X, Hao X, Xu L, et al. Construction of supramolecular liquid-crystalline metallacycles for holographic storage of colored images. J Am Chem Soc. 2020;142(13):6285–6294. 10.1021/jacs.0c00698
  • Xu L, Zhang D, Ronson TK, et al. Improved acid resistance of a metal–organic cage enables cargo release and exchange between hosts. Angew Chem Int Ed. 2020;59(19):7435–7438.10.1002/anie.202001059
  • Zhang D, Ronson TK, Xu L, et al. Transformation network culminating in a heteroleptic Cd6L6L′2 twisted trigonal prism. J Am Chem Soc. 2020;142(20):9152–9157. 10.1021/jacs.0c03798
  • Zhu J-L, Zhang D, Ronson TK, et al. A cavity-tailored metal-organic cage entraps gases selectively in solution and the amorphous solid state. Angew Chem Int Ed. 2021;60(21):11789–11792.10.1002/anie.202102095
  • Wang J, He C, Wu P, et al. An amide-containing metal–organic tetrahedron responding to a spin-trapping reaction in a fluorescent enhancement manner for biological imaging of NO in living cells. J Am Chem Soc. 2011;133(32):12402–12405. 10.1021/ja2048489
  • Oldacre AN, Friedman AE, Cook TR A self-assembled cofacial cobalt porphyrin prism for oxygen reduction catalysis. J Am Chem Soc. 2017;139(4):1424–1427. 10.1021/jacs.6b12404
  • Roy B, Ghosh AK, Srivastava S, et al. A Pd8 tetrafacial molecular barrel as carrier for water insoluble fluorophore. J Am Chem Soc. 2015;137(37):11916–11919. 10.1021/jacs.5b08008
  • Gemen J, Ahrens J, Shimon LJW, et al. Modulating the optical properties of BODIPY dyes by noncovalent dimerization within a flexible coordination cage. J Am Chem Soc. 2020;142(41):17721–17729. 10.1021/jacs.0c08589
  • Guo X-Q, Zhou L-P, Hu S-J, et al. Hexameric lanthanide–organic capsules with tertiary structure and emergent functions. J Am Chem Soc. 2021;143(16):6202–6210. 10.1021/jacs.1c01168
  • Li K, Zhang L-Y, Yan C, et al. Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal–organic cages via metalloligand strategy for guest trapping and protection. J Am Chem Soc. 2014;136(12):4456–4459. 10.1021/ja410044r
  • Chen L-J, Chen S, Qin Y, et al. Construction of porphyrin-containing metallacycle with improved stability and activity within mesoporous carbon. J Am Chem Soc. 2018;140(15):5049–5052. 10.1021/jacs.8b02386
  • Zhang D, Yu W, Li S, et al. Artificial light-harvesting metallacycle system with sequential energy transfer for photochemical catalysis. J Am Chem Soc. 2021;143(3):1313–1317. 10.1021/jacs.0c12522
  • Lin H-Y, Zhou L-Y, Mei F, et al. Highly efficient self-assembly of metallacages and their supramolecular catalysis behaviors in microdroplets. Angew Chem Int Ed. 2023;62(27):e202301900.10.1002/anie.202301900
  • Dey N, Haynes CJE Supramolecular Coordination Complexes as Optical Biosensors. ChemPluschem. 2021;86(3):418–433.10.1002/cplu.202100004
  • Huang B, Liu X, Yang G, et al. A near-infrared organoplatinum(II) metallacycle conjugated with Heptamethine Cyanine for trimodal cancer therapy. CCS Chemistry. 2022;4(6):2090–2101.10.31635/ccschem.021.202100950
  • Wu X, Zhu W Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem Soc Rev. 2015;44(13):4179–4184. 10.1039/C4CS00152D
  • Yau CMS, Pascu SI, Odom SA, et al. Stabilisation of a heptamethine cyanine dye by rotaxane encapsulation. Chem Comm. 2008 (25):2897–2899. 25 10.1039/b802728e
  • Acharyya K, Bhattacharyya S, Lu S, et al. Emissive platinum(II) macrocycles as tunable cascade energy transfer scaffolds. Angew Chem Int Ed. 2022;61(19):e202200715.10.1002/anie.202200715
  • Kumar A, Saha R, Mukherjee PS Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization. Chem Sci. 2021;12(14):5319–5329. 10.1039/D1SC00097G
  • Hou Y, Zhang Z, Lu S, et al. Highly Emissive perylene diimide-based metallacages and their host–guest Chemistry for information encryption. J Am Chem Soc. 2020;142(44):18763–18768. 10.1021/jacs.0c09904
  • Zhang Z, Zhao Z, Hou Y, et al. Aqueous platinum(II)-cage-based light-harvesting system for photocatalytic cross-coupling hydrogen evolution reaction. Angew Chem Int Ed. 2019;58(26):8862–8866.10.1002/anie.201904407
  • Peng H-Q, Niu L-Y, Chen Y-Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem Rev. 2015;115(15):7502–7542. 10.1021/cr5007057
  • Yuan L, Lin W, Zheng K, et al. FRET-Based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res. 2013;46(7):1462–1473. 10.1021/ar300273v
  • Chen G, Song F, Xiong X, et al. Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res. 2013;52(33):11228–11245. 10.1021/ie303485n
  • Jares-Erijman EA, Jovin TM FRET imaging. Nat Biotechnol. 2003;21(11):1387–1395.10.1038/nbt896
  • Sautter A, Kaletaş BK, Schmid DG, et al. Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square. J Am Chem Soc. 2005;127(18):6719–6729. 10.1021/ja0448216
  • You CC, Hippius C, Grune M, et al. Light-harvesting metallosupramolecular squares composed of perylene bisimide walls and fluorescent antenna dyes. Chem A Euro J. 2006;12(28):7510–7519. 10.1002/chem.200600413
  • Würthner F, Sautter A Energy transfer in multichromophoric self-assembled molecular squares. Org Biomol Chem. 2003;1(2):240–243. 10.1039/b208582h
  • Karakostas N, Kaloudi-Chantzea A, Martinou E, et al. Energy transfer within self-assembled cyclic multichromophoric arrays based on orthogonally arranged donor–acceptor building blocks. Faraday Discuss. 2015;185:433–54. 10.1039/C5FD00083A
  • Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32(29):7127–7138.10.1016/j.biomaterials.2011.06.024
  • Ding Y, Tong Z, Jin L, et al. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy. Adv Mater. 2022;34(7):e2106388. 10.1002/adma.202106388
  • Qin Y, Chen LJ, Dong F, et al. Light-controlled generation of singlet oxygen within a discrete dual-stage metallacycle for cancer therapy. J Am Chem Soc. 2019;141(22):8943–8950. 10.1021/jacs.9b02726
  • Huang CB, Xu L, Zhu JL, et al. Real-time monitoring the dynamics of coordination-driven self-assembly by fluorescence-resonance energy transfer. J Am Chem Soc. 2017;139(28):9459–9462. 10.1021/jacs.7b04659
  • Jia PP, Xu L, Hu YX, et al. Orthogonal self-assembly of a two-step fluorescence-resonance energy transfer system with improved photosensitization efficiency and photooxidation activity. J Am Chem Soc. 2021;143(1):399–408. 10.1021/jacs.0c11370
  • Zhang M, Saha ML, Wang M, et al. Multicomponent platinum(II) cages with tunable emission and amino acid sensing. J Am Chem Soc. 2017;139(14):5067–5074. 10.1021/jacs.6b12536
  • Hong Y, Lam JWY, Tang BZ Aggregation-induced emission. Chem Soc Rev. 2011;40(11):5361–5388. 10.1039/c1cs15113d
  • Zhao Z, He B, Tang BZ Aggregation-induced emission of siloles. Chem Sci. 2015;6(10):5347–5365. 10.1039/C5SC01946J
  • Mei J, Hong Y, Lam JW, et al. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater. 2014;26(31):5429–79. 10.1002/adma.201401356
  • Mei J, Huang Y, Tian H Progress and trends in AIE-Based bioprobes: a brief overview. ACS Appl Mater Interfaces. 2018;10(15):12217–12261.10.1021/acsami.7b14343
  • Zhang Z, Zhao Z, Wu L, et al. Emissive platinum(II) cages with reverse fluorescence resonance energy transfer for multiple sensing. J Am Chem Soc. 2020;142(5):2592–2600. 10.1021/jacs.9b12689
  • Zhu H, Li Q, Shi B, et al. Dual-Emissive platinum(II) metallacage with a sensitive oxygen response for imaging of hypoxia and imaging-Guided Chemotherapy. Angew Chem Int Ed. 2020;59(45):20208–20214.10.1002/anie.202009442
  • Jia PP, Hu YX, Peng ZY, et al. Construction of an artificial light-harvesting system with efficient photocatalytic activity in an aqueous solution based on a FRET-Featuring metallacage. Inorg Chem. 2022;65(5):1950–1957. 10.1021/acs.inorgchem.2c01869
  • Neelakandan PP, Jiménez A, Nitschke JR Fluorophore incorporation allows nanomolar guest sensing and white-light emission in M4L6 cage complexes. Chem Sci. 2014;5(3):908–915. 10.1039/C3SC53172D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.