90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An artificial selective binding pocket for multivalent anions

, , &
Pages 196-203 | Received 01 Nov 2023, Accepted 26 Dec 2023, Published online: 07 Jan 2024

References

  • Stevers LM, de Vink PJ, Ottmann C, et al. A thermodynamic model for multivalency in 14-3‐3 protein−protein interactions. J Am Chem Soc. 2018;140(43):14498–14510. doi: 10.1021/jacs.8b09618
  • Nguyen TA, Gronauer TF, Sieber SA, et al. Substrate profiling of mitochondrial caseinolytic protease P via a site-specific photocrosslinking approach. Angew Chem Int Ed. 2022;61(10):e202111085. doi: 10.1002/anie.202111085
  • Kolesnikov GV, German KE, Kirakosyan G, et al. Macrocyclic receptor for pertechnetate and perrhenate anions. Org Biomol Chem. 2011;9(21):7358–7364. doi: 10.1039/c1ob05873h
  • Estarellas C, Frontera A, Quinonero D, et al. Relevant anion–π interactions in biological systems: the case of urate oxidase. Angew Chem Int Ed. 2011;123(2):435–438. doi: 10.1002/ange.201005635
  • Akhtar N, Biswas O, Manna D. Biological applications of synthetic anion transporters. Chem Commun. 2020;56(91):14137–14153. doi: 10.1039/D0CC05489E
  • Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep. 2017;9(4):323–344. doi: 10.1111/1758-2229.12538
  • Narayan OP, Verma N, Jogawat A, et al. Sulfur transfer from the endophytic fungus serendipita indica improves maize growth and requires the sulfate transporter SiSulT. Plant Cell. 2021;33(4):1268–1285. doi: 10.1093/plcell/koab006
  • Kumar A, Chanderman A, Makolomakwa M, et al. Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. Critical Rev Environ Sci Technol. 2016;46(6):556–591. doi: 10.1080/10643389.2015.1131562
  • Ye C, Lu K, Song H, et al. A critical review of sulfate aerosol formation mechanisms during winter polluted periods. J Environ Sci. 2023;123(1):387–399. doi: 10.1016/j.jes.2022.07.011
  • Molina P, Zapata F, Caballero A. Anion recognition strategies based on combined noncovalent interactions. Chem Rev. 2017;117(15):9907–9972. doi: 10.1021/acs.chemrev.6b00814
  • Gale PA, Howe ENW, Wu X. Anion receptor chemistry. Chem. 2016;1(3):351–422. doi: 10.1016/j.chempr.2016.08.004
  • Macreadie LK, Gilchrist AM, McNaughton DA, et al. Progress in anion receptor chemistry. Chem. 2022;8(1):46–118. doi: 10.1016/j.chempr.2021.10.029
  • Aydogan A. Synthesis and characterisation of a calix[4]pyrrole functional polystyrene via ‘click chemistry’ and its use in the extraction of halide anion salts. Supramol Chem. 2016;28(1–2):117–124. doi: 10.1080/10610278.2015.1092538
  • Gale PA, Caltagirone C. Anion sensing by small molecules and molecular ensembles. Chem Soc Rev. 2015;44(13):4212–4227. doi: 10.1039/C4CS00179F
  • Roundhill DM, Koch HF. Methods and techniques for the selective extraction and recovery of oxoanions. Chem Soc Rev. 2002;31(1):60–67. doi: 10.1039/B003141K
  • Kan X, Liu H, Pan Q, et al. Anion-π interactions: from concept to application. Chin Chem Lett. 2018;29(2):261–266. doi: 10.1016/j.cclet.2017.08.042
  • Ning R, Zhou H, Nie SX, et al. Chiral macrocycle-enabled counteranion trapping for boosting highly efficient and enantioselective catalysis. Angew Chem Int Ed. 2020;59(27):10894–10898. doi: 10.1002/anie.202003673
  • Hong XQ, Xing YY, Wang ZK, et al. Curvature-regulated transmembrane anion transport by a trifluoromethylated bisbenzimidazole. Chin Chem Lett. 2021;32(5):1653–1656. doi: 10.1016/j.cclet.2021.01.005
  • Huang WL, Wang XD, Ao YF, et al. An artificial single molecular channel showing high chloride transport selectivity and pH-responsive conductance. Angew Chem Int Ed. 2023;62(23):e202302198. doi: 10.1002/anie.202302198
  • Kang SO, Begum RA, Bowman-James K. Amide-based ligands for anion coordination. Angew Chem Int Ed. 2006;45(47):7882–7879. doi: 10.1002/anie.200602006
  • Gale PA, García-Garrido SE, Garric J. Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem Soc Rev. 2008;37(1):151–190. doi: 10.1039/B715825D
  • Kondo S, Hiraoka Y, Kurumatani N, et al. Selective recognition of dihydrogen phosphate by receptors bearing pyridyl moieties as hydrogen bond acceptors. Chem Commun. 2005;13(13):1720–1722. doi: 10.1039/B417304J
  • Oshchepkov AS, Shumilova TA, Namashivaya SR, et al. Hybrid macrocycles for selective binding and sensing of fluoride in aqueous solution. J Org Chem. 2018;83(4):2145–2153. doi: 10.1021/acs.joc.7b03077
  • Kilah NL, Beer PD. Pyridine and pyridinium-based anion receptors. Anion recognition in supromolecular chemistry. 2010;24:301–304. doi: 10.1007/7081_2010_33
  • Wagner-Wysiecka E, Chojnacki J. Chromogenic amides of pyridine-2,6-dicarboxylic acid as anion receptors. Supramol Chem. 2012;24(9):684–695. doi: 10.1080/10610278.2012.695789
  • Wang QQ, Begum RA, Day VW, et al. Chemical mustard containment using simple palladium pincer complexes: the influence of molecular walls. J Am Chem Soc. 2013;135(45):17193–17199. doi: 10.1021/ja408770u

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.