697
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Asymmetric urea, thiourea and squaramide receptors as minimal-anion binding motifs

, , , , &
Pages 208-222 | Received 05 Sep 2023, Accepted 11 Jan 2024, Published online: 28 Jan 2024

References

  • Park CH, Simmons HE. Macrobicyclic amines. III. Encapsulation of halide ions by in, in-1,(K + 2)-diazabicyclo[K.L.M.]-alkane ammonium ions. J Am Chem Soc. 1968;90(9):2431–2432. doi: 10.1021/ja01011a047
  • Duke RM, Veale EB, Pfeffer FM, et al. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev. 2010;39(10):3936–3953. doi: 10.1039/b910560n
  • Gale PA. Structural and molecular recognition studies with acyclic anion receptors. Acc Chem Res. 2006;39(7):465–475. doi: 10.1021/ar040237q
  • Suksaia C, Tuntulani T. Chromogenic anion sensors. Chem Soc Rev. 2003;32(4):192–202. doi: 10.1039/b209598j
  • Amendola V, Fabbrizzi L, Mosca L. Anion recognition by hydrogen bonding: urea-based receptors. Chem Soc Rev. 2010;39(10):3889–3915. doi: 10.1039/b822552b
  • Li A-F, Wang J-H, Wanga F, et al. Anion complexation and sensing using modified urea and thiourea-based receptors. Chem Soc Rev. 2010;39(10):3729–3745. doi: 10.1039/b926160p
  • Piepenbrock M-O, Lloyd GO, Clarke N, et al. Metal- and anion-binding supramolecular gels. Chem Rev. 2010;110(4):1960–2004. doi: 10.1021/cr9003067
  • Kundu S, Egboluche TK, Hossain AM. Urea- and thiourea-based receptors for anion binding. Acc Chem Res. 2023;56(11):1320–1329. doi: 10.1021/acs.accounts.2c00701
  • Evans NH, Beer PD. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew Chem Int Ed. 2014;53(44):11716–11754. doi: 10.1002/anie.201309937
  • Finnegan TJ, Liyana Gunawardana VW, Badjić JD. Molecular recognition of nerve agents and their organophosphorus surrogates: toward supramolecular scavengers and catalysts. Chemistry A European J. 2021;27(53):13280–13305. doi: 10.1002/chem.202101532
  • Sambrook MR, Vincent JC, Ede JA, et al. Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent Soman (GD) and commonly used simulants. RSC Adv. 2017;7(60):38069–38076. doi: 10.1039/C7RA03328A
  • Sambrook MR, Gass IA, Cragg PJ. Spectroscopic and inclusion properties of G-series chemical warfare agents and their simulants: a DFT study. Supramol Chem. 2018;30(3):206–217. doi: 10.1080/10610278.2017.1401074
  • Davis AB, Lambert RE, Fronczek FR, et al. An activated coumarin−enamine Michael acceptor for CN −. New J Chem. 2014;38(10):4678–4683. doi: 10.1039/C4NJ00862F
  • Mia R, Cragg PJ, Fronczek FR, et al. Killing two birds with one stone: phosphorylation by a tabun mimic and subsequent capture of cyanide using a single fluorescent chemodosimeter. New J Chem. 2022;46:21278–21286. doi: 10.1039/D2NJ04014J
  • Yang Y-C, Baker JA, Ward JR. Decontamination of chemical warfare agents. Chem Rev. 1992;92(8):1729–1743. doi: 10.1021/cr00016a003
  • Amendola V, Fabbrizzi L, Mosca L, et al. Urea-, squaramide-, and sulfonamide-based anion receptors: a thermodynamic study. Chem Eur J. 2011;17(21):5972–5981. doi: 10.1002/chem.201003411
  • Wezenberg SJ, Chen L-J, Bos JE, et al. Photomodulation of transmembrane transport and potential by stiff-stilbene based bis(thio)ureas. J Am Chem Soc. 2022;144(1):331–338. doi: 10.1021/jacs.1c10034
  • Kaupp G, Schmeyers J, Boy J. Quantitative solid-state reactions of amines with carbonyl compounds and isothiocyanates. Tetrahedron. 2000;56(36):6899–6911. doi: 10.1016/S0040-4020(00)00511-1
  • Hunter RF, Parken ER. The unsaturation and tautomeric mobility of heterocyclic compounds. Part 18. The methylation and bromination of a series of 2-p-substituted anilinothiaxoles. J Chem Soc. 1934;1175–1177.
  • Rostami A, Colin A, Li XY, et al. NN’-diarylsquaramides: general, high-yielding synthesis and applications in colorimetric anion sensing. J Org Chem. 2010;75:3983–3992. doi: 10.1021/jo100104g
  • Gómez DE, Fabbrizzi L, Licchelli M, et al. Urea vs. thiourea in anion recognition. Org Biomol Chem. 2005;3(8):1495–1500. doi: 10.1039/B500123D
  • Amendola V, Bergamaschi G, Boiocchi, et al. The squaramide versus urea contest for anion recognition. Chem Eur J. 2010;16(14):4368–4380. doi: 10.1002/chem.200903190
  • Niu H, Shu Q, Jin S, et al. A simple ratiometric and colorimetric chemosensor for the selective detection of fluoride in DMSO buffered solution. Spectrochim Acta A Mol Biomol Spectrosc. 2016;153:194–198. doi: 10.1016/j.saa.2015.08.030
  • Smith PJ, Reddington MV, Wilcox CS. Ion pair binding by a urea in chloroform solution. Tetrahedron Letters. 1992;33(41):6085–6088. doi: 10.1016/S0040-4039(00)60012-6
  • Bose P, Ahamed BN, Ghosh P. Functionalized guanidinium chloride based colourimetric sensors for fluoride and acetate: single crystal X-ray structural evidence of -NH deprotonation and complexation. Org Biomol Chem. 2011;9(6):1972–1979. doi: 10.1039/c0ob00947d
  • Pfeifer L, Engle KM, Pidgeon GW, et al. Hydrogen-bonded homoleptic fluoride–diarylurea complexes: structure, reactivity, and coordinating power. J Am Chem Soc. 2016;138(40):13314–13325. doi: 10.1021/jacs.6b07501
  • Kirby IL, Pitak MP, Wenzel W, et al. Systematic structural analysis of a series of anion receptor complexes. CrystEngcomm. 2013;15(44):9003–9010. doi: 10.1039/c3ce41503a
  • Kirby IL, Brightwell M, Pitak MP, et al. Systematic experimental charge density analysis of anion receptor complexes. Phys Chem Chem Phys. 2014;16(22):10943–10958. doi: 10.1039/C3CP54858A
  • Kirby IL, Pitak MP, Wilson C, et al. Electron density distribution studies as a tool to explore the behaviour of thiourea-based anion receptors. Cryst Eng Comm. 2015;17(14):2815–2826. doi: 10.1039/C5CE00213C
  • Pupo G, Vicini AC, Ascough DMH, et al. Hydrogen bonding phase-transfer catalysis with potassium fluoride: enantioselective synthesis of β-fluoroamines. J Am Chem Soc. 2019;141(7):2878–2883. doi: 10.1021/jacs.8b12568
  • Fujita T, Tsuji H, Deura H, et al. Insect sterilization activity of the 1-methyl-1-nitroso-3-phenylurea derivatives. Agric Biol Chem. 1969;33(5):785–789. doi: 10.1080/00021369.1969.10859381
  • Martin H, Dipling AL, Duerr D, et al. Patent DE1802739 (A1) - Neue biozide Mittel. 1969.
  • Mohamed M, Gonçalves TP, Whitby RJ, et al. New insights into cyclobutenone rearrangements: a total synthesis of the natural ROS-generating anti-cancer agent cribrostatin 6. Chem: Eur J. 2011;17(49):13698–13705. doi: 10.1002/chem.201102263
  • Benenato KE, Kumarasinghe ES, Cornebise M Patent WO2017049245.
  • Spartan ’20, Wavefunction Inc., Irvine CA 92612 USA.
  • SHELX Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71(1):3–8. doi: 10.1107/S2053229614024218
  • Scholl R, Holdermann K. Ueber die Einwirkung von Phenylisocyanat auf Methylnitramin. Justus Liebigs Ann Chem. 1906;345(3):376–384. doi: 10.1002/jlac.19063450311
  • Scholl R, Nyberg B. Umlagerung des a - Nitro- a - Methyl- b - Phenylharnstoffs in symm. Methyl-Nitrophenylharnstoff. Ber Dtsch Chem Ges. 1906;39(3):2491–2494. doi: 10.1002/cber.19060390323
  • Backer HJ, Groot J. Transposition intramoléculaire de nitrophénylsulfonylurées: (Les propriétés du groupe sulfonyle XIII). Recl Trav Chim Pays‐Bas. 1950;69(11):1323–1347. doi: 10.1002/recl.19500691102
  • O’Neill RC, Basso AJ Substituted phenyl urea compositions for treating coccidiosis US2787574 (A). 1957.
  • Benson WR, Kagan B, Lustig E, et al. Selective carbamylation with methyl isocyanate. J Org Chem. 1967;32(11):3635–3640. doi: 10.1021/jo01286a074
  • Ambati NB, Anand V, Hanumanthu P. A facile synthesis of 2-N(methyl amino) benzothiazoles. Synth Comm. 1997;27(9):1487–1493. doi: 10.1080/00397919708006084
  • Roecker L, Aiyegbo M, Al-Haddad A, et al. Synthesis and characterisation of [(en)2Co]3+ complexes coordinated by substituted thiourea ligands. Aust J Chem. 2013;66(8):944–951. doi: 10.1071/CH13150
  • Arora SK, Banerjee R, Kamboj RK, et al. Patent WO2009109998 (A1) - Novel protein tyrosine phosphatase - Ib inhibitors. 2009.
  • Palomo C, Mestres R. Convenient and improved synthesis of unstable carbodiimides. Synthesis. 1981;1981:373–374. doi: 10.1055/s-1981-29454
  • Volonterio A, Zanda M. Multicomponent, one-pot sequential synthesis of 1,3,5- and 1,3,5,5-substituted barbiturates. J Org Chem. 2008;73:7486–7497. doi: 10.1021/jo801288s
  • Patel HJ, Sarra J, Caruso F, et al. Synthesis and anticonvulsant activity of new N-1’,N-3’-disubstituted-2’H,3H,5’H-spiro-(2-benzofuran-1,4’-imidazolidine)-2’,3,5’-triones. Bioorg Med Chem Lett. 2006;16:4644–4647. doi: 10.1016/j.bmcl.2006.05.102
  • Kang SO, Llinares JM, Powell D, et al. New polyamide cryptand for anion binding. J Am Chem Soc. 2003;125(34):10152–10153.
  • http://supramolecular.org
  • Ede JA, Cragg PJ, Sambrook MR. Comparison of binding affinities of water-soluble calixarenes with the organophosphorus nerve agent Soman (GD) and commonly-used nerve agent simulants. Molecules. 2018;23(1):207. doi: 10.3390/molecules23010207
  • Sheehan R, Cragg PJ. Supramolecular chemistry in silico. Supramol Chem. 2008;20:443–451.
  • Boiocchi M, Del Boca L, Gómez DE, et al. Nature of urea-fluoride interaction: Incipient and definitive proton transfer. J Am Chem Soc. 2004;126:16507–16514. doi: 10.1021/ja045936c
  • Cave H, Ede JA, Sambrook MR, et al. Hydrogen-bonding interactions in crown-(thio)urea complexes with anions, chemical warfare agents and simulants. Supramol Chem. 2019;31(11):703–712. doi: 10.1080/10610278.2019.1659268
  • Dey SK, Chutia R, Das G. Oxyanion-encapsulated caged supramolecular frameworks of a tris(urea) receptor: evidence of hydroxide- and fluoride-ion-induced fixation of atmospheric CO2 as a trapped CO32− anion. Inorg Chem. 2012;51:1727–1738. doi: 10.1021/ic2020379
  • Manna U, Das A, Das G. Self-assemblies of positional isomeric linear bis-urea ligands with oxyanions/hydrated oxyanions: evidence of F− and OH− induced atmospheric CO2 fixation. Cryst Growth Des. 2018;18:6801–6815. doi: 10.1021/acs.cgd.8b01044
  • Zhang X, Gross U, Fluorocarbonate SK. [FCO2]−: preparation and structure. Angew Chem Int Ed Engl. 1995;34:1858–1860. doi: 10.1002/anie.199518581
  • Thomas DA, Mucha E, Lettow M, et al. Characterization of a trans–trans carbonic acid–fluoride complex by infrared action spectroscopy in helium nanodroplets. J Am Chem Soc. 2019;141(14):5815–5823. doi: 10.1021/jacs.8b13542
  • Ros-Lis JV, Martínez‐Máñez R, Sancenón F, et al. Signalling mechanisms in anion-responsive push-pull chromophores: the hydrogen-bonding, deprotonation and anion-exchange chemistry of functionalized azo dyes. Eur J Org Chem. 2007;2007:2449–2458. doi: 10.1002/ejoc.200601111
  • Metal-based carbon dioxide uptake and conversion, Charis E. V. Nathan [ PhD thesis]. University of Brighton; 2022.
  • Gass IA, Moubaraki B, Langley SK, et al. A π–π 3D network of tetranuclear μ2/μ3-carbonato Dy(III) bis-pyrazolylpyridine clusters showing single molecule magnetism features. Chem Commun. 2012;48:2089–2091. doi: 10.1039/c2cc16946k
  • Pironti C, Cucciniello R, Camin F, et al. Determination of the 13C/12C carbon isotope ratio in carbonates and bicarbonates by 13C NMR spectroscopy. Anal Chem. 2017;89(21):11413–11418. doi: 10.1021/acs.analchem.7b02473
  • Coles SJ, Gale PA. Changing and challenging times for service crystallography. Chem Sci. 2012;3:683–689. doi: 10.1039/C2SC00955B