105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of chromone-based thiosemicarbazone as selective chemosensor for cyanide ion and its DFT calculation studies

, , , , , & show all
Pages 223-238 | Received 13 Nov 2023, Accepted 05 Feb 2024, Published online: 22 Feb 2024

References

  • Ma L, Leng T, Wang K, et al. A coumarin-based fluorescent and colorimetric chemosensor for rapid detection of fluoride ion. Tetrahedron. 2017;73(10):1306–1310. doi: 10.1016/j.tet.2017.01.034
  • Zhao Y-H, Li Y, Long Y, et al. Highly selective fluorescence turn-on determination of fluoride ions via chromogenic aggregation of a silyloxy-functionalized salicylaldehyde azine. Tetrahedron Lett. 2017;58(13):1351–1355. doi: 10.1016/j.tetlet.2017.02.066
  • Padhan SK, Podh MB, Sahu PK, et al. Optical discrimination of fluoride and cyanide ions by coumarin-salicylidene based chromofluorescent probes in organic and aqueous medium. Sensors Actuat B Chem. 2018;255:1376–1390. doi: 10.1016/j.snb.2017.08.133
  • Tummachote J, Punyain W, Thanomsak S, et al. Colorimetric N-butyl-3, 6-diamidecarbazole-based chemosensors for detection of fluoride and cyanide anions. Spectrochim Acta A Mol Biomol Spectrosc. 2019;214:384–392. doi: 10.1016/j.saa.2019.02.081
  • Kodlady SN, Narayana B, Sarojini B, et al. Aromatic aldehyde based chemosensors for fluoride and cyanide detection in organic and aqueous media: ascertained by characterization, spectroscopic and DFT studies. Inorganica Chimica Acta. 2019;494:245–255. doi: 10.1016/j.ica.2019.05.030
  • Jali BR, Baruah JB. Recent progress in Schiff bases in detections of fluoride ions. Dyes Pigments. 2021;194:109575. doi: 10.1016/j.dyepig.2021.109575
  • Han J, Zhang J, Gao M, et al. Recent advances in chromo-fluorogenic probes for fluoride detection. Dyes Pigments. 2019;162:412–439. doi: 10.1016/j.dyepig.2018.10.047
  • Sarkar A, Bhattacharyya S, Mukherjee A. Colorimetric detection of fluoride ions by anthraimidazoledione based sensors in the presence of cu (II) ions. Dalton Trans. 2016;45(3):1166–1175. doi: 10.1039/C5DT03209A
  • Zhang X, Tan X, Hu Y. Blue/Yellow emissive carbon dots coupled with curcumin: a hybrid sensor toward fluorescence turn-on detection of fluoride ion. J Hazard Mater. 2021;411:125184. doi: 10.1016/j.jhazmat.2021.125184
  • Zhu B, Yuan F, Li R, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells. Chem Comm. 2011;47(25):7098–7100. doi: 10.1039/c1cc11308a
  • Qin Y, Faheem A, Hu Y. A spore-based portable kit for on-site detection of fluoride ions. J Hazard Mater. 2021;419:126467. doi: 10.1016/j.jhazmat.2021.126467
  • Jo TG, Na YJ, Lee JJ, et al. A diaminomaleonitrile based selective colorimetric chemosensor for copper (II) and fluoride ions. New J Chem. 2015;39(4):2580–2587. doi: 10.1039/C5NJ00125K
  • Zhuang X, Liu W, Wu J, et al. A novel fluoride ion colorimetric chemosensor based on coumarin. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(5):1352–1355. doi: 10.1016/j.saa.2011.04.068
  • Wang Z, Wu Q, Li J, et al. Two benzoyl coumarin amide fluorescence chemosensors for cyanide anions. Spectrochim Acta A Mol Biomol Spectrosc. 2017;183:1–6. doi: 10.1016/j.saa.2017.04.008
  • Adegoke OA, Adesuji TE, Thomas OE. Novel colorimetric sensors for cyanide based on azo-hydrazone tautomeric skeletons. Spectrochim Acta A Mol Biomol Spectrosc. 2014;128:147–152. doi: 10.1016/j.saa.2014.02.118
  • Kim IJ, Ramalingam M, Son Y-A. A reaction based colorimetric chemosensor for the detection of cyanide ion in aqueous solution. Sensors Actuat B Chem. 2017;246:319–326. doi: 10.1016/j.snb.2017.02.015
  • Prakash K, Sahoo PR, Kumar S. A substituted spiropyran for highly sensitive and selective colorimetric detection of cyanide ions. Sensors Actuat B Chem. 2016;237:856–864. doi: 10.1016/j.snb.2016.06.170
  • Chakraborty S, Paul S, Roy P, et al. Detection of cyanide ion by chemosensing and fluorosensing technology. Inorg Chem Commun. 2021;128:108562. doi: 10.1016/j.inoche.2021.108562
  • Dong ZM, Ren H, Wang JN, et al. A new naphthopyran-based chemodosimeter with aggregation-induced emission: selective dual-channel detection of cyanide ion in aqueous medium and test strips. Microchem J. 2020;155:104676. doi: 10.1016/j.microc.2020.104676
  • Long C, Hu J-H, Fu Q-Q, et al. A new colorimetric and fluorescent probe based on rhodamine B hydrazone derivatives for cyanide and Cu2+ in aqueous media and its application in real life. Spectrochim Acta A Mol Biomol Spectrosc. 2019;219:297–306. doi: 10.1016/j.saa.2019.04.052
  • Jiao S, Wang X, Sun Y, et al. A novel fluorescein-coumarin-based fluorescent probe for fluoride ions and its applications in imaging of living cells and zebrafish in vivo. Sensors Actuat B Chem. 2018;262:188–194. doi: 10.1016/j.snb.2018.01.186
  • Kumar VV, Ramadevi D, Ankathi VM, et al. Development of porphyrin-based chemosensor for highly selective sensing of fluoride ion in aqueous media. Microchem J. 2020;157:105028. doi: 10.1016/j.microc.2020.105028
  • Cametti M, Rissanen K. Recognition and sensing of fluoride anion. Chem Commun. 2009;20:2809–2829. doi: 10.1039/b902069a
  • Anzenbacher P, Jursíková K, Sessler JL. Second generation calixpyrrole anion sensors. J Am Chem Soc. 2000;122(38):9350–9351. doi: 10.1021/ja001308t
  • Chellappan K, Singh NJ, Hwang IC, et al. A calix [4] imidazolium [2] pyridine as an anion receptor. Angewandte Chemie. 2005;44(19):2899–2903. doi: 10.1002/anie.200500119
  • Esteban-Gómez D, Fabbrizzi L, Licchelli M. Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. J Org Chem. 2005;70(14):5717–5720. doi: 10.1021/jo050528s
  • Jose DA, Kar P, Koley D, et al. Phenol-and catechol-based ruthenium (II) polypyridyl complexes as colorimetric sensors for fluoride ions. Inorg Chem. 2007;46(14):5576–5584.
  • Lin C-I, Selvi S, Fang J-M, et al. Pyreno [2, 1-b] pyrrole and bis (pyreno [2, 1-b] pyrrole) as selective chemosensors of fluoride ion: a mechanistic study. J Org Chem. 2007;72(9):3537–3542. doi: 10.1021/jo070169w
  • Qiao Y-H, Lin H, Lin H-K. A novel colorimetric sensor for anions recognition based on disubstituted phenylhydrazone. J Incl Phenom Macrocyclic Chem. 2007;59(3–4):211–215. doi: 10.1007/s10847-007-9312-5
  • Zhang X, Guo L, Wu F-Y, et al. Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org Lett. 2003;5(15):2667–2670. doi: 10.1021/ol034846u
  • Islam M, Khan A, Khan M, et al. Synthesis and biological evaluation of 2-nitrocinnamaldehyde derived thiosemicarbazones as urease inhibitors. J Mol Struct. 2023;1284:135387. doi: 10.1016/j.molstruc.2023.135387
  • Gaussian 16, revision B.01, Frisch MJ, Trucks GW, Schlegel HB, et al., Gaussian, Inc., Wallingford CT, 2016.
  • Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x
  • McLean AD, Chandler GS. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z =11–18. J Chem Phys. 1980;72(10):5639–5648. doi: 10.1063/1.438980
  • Krishnan R, Binkley JS, Seeger R, et al. Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys. 1980;72(1):650–654. doi: 10.1063/1.438955
  • Ahmed N, Zareen W, Shafiq Z, et al. A coumarin based Schiff Base: an effective colorimetric sensor for selective detection of F– ion in real samples and DFT studies. Spectrochimica Acta Part A: Mol Biomol Spectr. 2023;286:121964. doi: 10.1016/j.saa.2022.121964
  • Basri R, Ahmed N, Khalid M, et al. Quinoline based thiosemicarbazones as colorimetric chemosensors for fluoride and cyanide ions and DFT studies. Sci Rep. 2022;12(1):4927. doi: 10.1038/s41598-022-08860-3
  • Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A. 1998;102(11):1995–2001. doi: 10.1021/jp9716997
  • Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem. 2003;24(6):669–81. doi: 10.1002/jcc.10189
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics. 2012;41(1):1–17. doi: 10.1186/1758-2946-4-17
  • Avogadro: an open-source molecular builder and visualization tool. Version 1.1.1. http://avogadro.cc/
  • Zimmerman JR, Criss C, Evans S, et al. Fluorescent sensor for fluoride anion based on a sulfonamido-chromone scaffold. Tetrahedron Lett. 2018;59(25):2473–2476. doi: 10.1016/j.tetlet.2018.05.050
  • Hou F, Zhu L, Zhang H, et al. A highly selective and sensitive fluorescent probe based on the chromone fluorophore for imaging hydrogen sulfide in living cells. New J Chem. 2020;44(4):1537–1541. doi: 10.1039/C9NJ05386G
  • Sahu S, Sikdar Y, Bag R, et al. Visual detection of fluoride ion based on ICT mechanism. Spectrochim Acta A Mol Biomol Spectrosc. 2019;213:354–360. doi: 10.1016/j.saa.2019.01.073
  • Isaac IO, Munir I, Al-Rashida M, et al. Novel acridine-based thiosemicarbazones as ‘turn-on’ chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. R Soc Open Sci. 2018;5(7):180646. doi: 10.1098/rsos.180646
  • Amuthakala S, Bharathi S, Rahiman AK. Thiosemicarbazone-based bifunctional chemosensors for simultaneous detection of inorganic cations and fluoride anion. J Mol Struct. 2020;1219:128640. doi: 10.1016/j.molstruc.2020.128640
  • Ashraf A, Khizar M, Islam M, et al. Synthesis of sensitive novel dual signaling pyridopyrimidine-based fluorescent “turn off” chemosensors for anions determination. Measurement. 2020;151:107267. doi: 10.1016/j.measurement.2019.107267
  • Arooj M, Zahra M, Islam M, et al. Coumarin based thiosemicarbazones as effective chemosensors for fluoride ion detection. Spectrochim Acta A Mol Biomol Spectrosc. 2021;261:120011. doi: 10.1016/j.saa.2021.120011
  • Islam M, Hameed A, Ayub K, et al. Receptor‐Spacer‐Fluorophore based coumarin‐Thiosemicarbazones as anion chemosensors with “turn on” response: spectroscopic and computational (DFT) studies. ChemistrySelect. 2018;3(26):7633–7642. doi: 10.1002/slct.201801035
  • Mohanasundaram D, Kumar GGV, Kumar SK, et al. Turn-on fluorescence sensor for selective detection of fluoride ion and its molecular logic gates behavior. J Mol Liq. 2020;317:113913. doi: 10.1016/j.molliq.2020.113913

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.