69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Theoretical investigation of the lack of chiral self-sorting behaviour of a molecular cinquefoil knot

, , , &
Pages 247-256 | Received 08 Nov 2023, Accepted 18 Mar 2024, Published online: 01 Apr 2024

References

  • Wu A, Isaacs L. Self-sorting: the exception or the rule? J Am Chem Soc. 2003;125:4831–4835. doi: 10.1021/ja028913b
  • Safont-Sempere MM, Fernández G, Würthner F. Self-sorting phenomena in complex supramolecular systems. Chem Rev. 2011;111(9):5784–5814. doi: 10.1021/cr100357h
  • Jędrzejewska H, Szumna A. Making a right or left choice: chiral self-sorting as a tool for the formation of discrete complex structures. Chem Rev. 2017;117(6):4863–4899. doi: 10.1021/acs.chemrev.6b00745
  • Jumde RP, Lanza F, Veenstra MJ, et al. Catalytic asymmetric addition of Grignard reagents to alkenyl-substituted aromatic N-heterocycles. Science. 2016;352(6284):433–437. doi: 10.1126/science.aaf1983
  • Noyori R, Suga S, Oka H, et al. Self and nonself recognition of chiral catalysts: The origin of nonlinear effects in the amino-alcohol catalyzed asymmetric addition of diorganozincs to aldehydes. Chem Rec. 2001;1(2):85–100. doi: 10.1002/tcr.1
  • Kitamura M, Yamakawa M, Oka H, et al. Homochiral and heterochiral dimers of the methylzinc alkoxide formed from dimethylzinc and enantiomeric 3-exo-(dimethylamino)isoborneol—origin of the distinct differences in solution-phase behavior and crystal structures. Chem Eur J. 1996;2(9):1173–1181. doi: 10.1002/chem.19960020921
  • Kitamura M, Okada S, Suga S, et al. Enantioselective addition of dialkylzincs to aldehydes promoted by chiral amino alcohols. Mechanism and nonlinear effect. J Am Chem Soc. 1989;111(11):4028–4036. doi: 10.1021/ja00193a040
  • Kitamura M, Suga S, Niwa M, et al. Enantiomer recognition of asymmetric catalysts. Thermodynamic properties of homochiral and heterochiral dimers of the methylzinc alkoxide formed from dimethylzinc and enantiomeric 3-exo-(dimethylamino)isoborneol. J Phys Chem. 1994;98(48):12776–12781. doi: 10.1021/j100099a048
  • Shang X, Song I, Jung GY, et al. Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nat Commun. 2018;9(1):3933. doi: 10.1038/s41467-018-06147-8
  • Roche C, Sun HJ, Prendergast ME, et al. Homochiral columns constructed by chiral self-sorting during supramolecular helical organization of hat-shaped molecules. J Am Chem Soc. 2014;136(19):7169–7185. doi: 10.1021/ja5035107
  • Ok M, Kim KY, Choi H, et al. Helicity-driven chiral self-sorting supramolecular polymerization with Ag+: right- and left-helical aggregates. Chem Sci. 2022;13(11):3109–3117. doi: 10.1039/D1SC06413D
  • Schulte TR, Holstein JJ, Clever GH. Chiral self-discrimination and guest recognition in helicene-based coordination cages. Angew Chem Int Ed. 2019;58:5562–5566. doi: 10.1002/anie.201812926
  • Sato K, Itoh Y, Aida T. Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem Sci. 2014;5(1):136–140. doi: 10.1039/C3SC52449C
  • Hwang IW, Kamada T, Ahn TK, et al. Porphyrin boxes constructed by homochiral self-sorting assembly: optical separation, exciton coupling, and efficient excitation energy migration. J Am Chem Soc. 2004;126(49):16187–16198. doi: 10.1021/ja046241e
  • Ishida Y, Aida T. Homochiral supramolecular polymerization of an “S”-shaped chiral monomer: translation of optical purity into molecular weight distribution. J Am Chem Soc. 2002;124(47):14017–14019. doi: 10.1021/ja028403h
  • Shi X, Fettinger JC, Davis JT. Homochiral G-quadruplexes with Ba2+ but not with K+: the cation programs enantiomeric self-recognition. J Am Chem Soc. 2001;123(27):6738–6739. doi: 10.1021/ja004330v
  • Tateishi T, Kojima T, Hiraoka S. Chiral self-sorting process in the self-assembly of homochiral coordination cages from axially chiral ligands. Commun Chem. 2018;1(1):1–12. doi: 10.1038/s42004-018-0020-4
  • Ghorai S, Natarajan R. Anion-driven programmable chiral self-sorting in metal-organic cages and structural transformations between heterochiral and homochiral cages. Chem Eur J. 2023;29(6):e202203085. doi: 10.1002/chem.202203085
  • Lim NCH, Jackson SE. Molecular knots in biology and chemistry. J Phys Condens Matter. 2015;27(35):354101. doi: 10.1088/0953-8984/27/35/354101
  • Taylor WR. A deeply knotted protein structure and how it might fold. Nature. 2000;406(6798):916–919. doi: 10.1038/35022623
  • Faísca PFN. Knotted proteins: a tangled tale of structural biology. Comput Struct Biotechnol J. 2015;13:459–468. doi: 10.1016/j.csbj.2015.08.003
  • Sulkowska JI. On folding of entangled proteins: knots, lassos, links and θ-curves. Curr Opin Struct Biol. 2020;60:131–141. doi: 10.1016/j.sbi.2020.01.007
  • Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. J Phys Condens Matter. 2011;23(3):033101. doi: 10.1088/0953-8984/23/3/033101
  • Sumners DWD. Knots and tangles. In: Banagl M, and Vogel D, editors. The mathematics of knots. Contributions in Mathematical and Computational Sciences 1. Berlin, Heidelberg: Springer;2011, pp. 327–353.
  • Liu LF, Perkocha L, Calendar R, et al. Knotted DNA from bacteriophage capsids. Proc Natl Acad Sci U S A. 1981;78(9):5498–5502. doi: 10.1073/pnas.78.9.5498
  • Frank-Kamenetskii MD, Lukashin AV, Vologodskii AV. Statistical mechanics and topology of polymer chains. Nature. 1975;258:398–402. doi: 10.1038/258398a0
  • Mansfield ML. Knots in Hamilton Cycles. Macromolecules. 1994;27(20):5924–5926. doi: 10.1021/ma00098a057
  • Saitta AM, Soper PD, Wasserman E, et al. Influence of a knot on the strength of a polymer strand. Nature. 1999;399(6731):46–48. doi: 10.1038/19935
  • Herzfeld C. Wattana, an Orangutan in Paris. Chicago: University of Chicago Press;2016, p. 87. translated by Martin, O. Y., Martin, R. D. (PDF) Wattana: An Orangutan in Paris (researchgate.net).
  • Turner JC, van de Griend P, Warner C, et al. In: Turner JC, van de Griend P, editors. History and science of knots. Singapore: World Scientific; 1996. p. 1–448.
  • Forgan RS, Sauvage J-P, Stoddart JF. Chemical topology: complex molecular knots, links, and entanglements. Chem Rev. 2011;111(9):5434–5464. doi: 10.1021/cr200034u
  • Fielden SDP, Leigh DA, Woltering SL. Molecular knots. Angew Chem Int Ed. 2017;56(37):11166–11194. doi: 10.1002/anie.201702531
  • Chambron J-C, Dietrich-Buchecker C, Sauvage J-P. From classical chirality to topologically chiral catenands and knots. In: Supramolecular chemistry I— directed synthesis and molecular recognition. Topics in Current Chemistry 165, Vol. I, pp. 131–162. Berlin, Heidelberg: Berlin, Heidelberg: Springer; 2007.
  • Ashbridge Z, Fielden SDP, Leigh DA, et al. Knotting matters: orderly molecular entanglements. Chem Soc Rev. 2022;51(18):7779–7809. doi: 10.1039/D2CS00323F
  • Ayme J-F, Beves JE, Campbell CJ, et al. Template synthesis of molecular knots. Chem Soc Rev. 2013;42(4):1700–1712. doi: 10.1039/C2CS35229J
  • Dietrich-Buchecker CO, Sauvage J-P. A synthetic molecular trefoil knot. Angew Chem Int Ed Engl. 1989;28(2):189–192. doi: 10.1002/anie.198901891
  • Guo J, Mayers PC, Breault GA, et al. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat Chem. 2010;2(3):218–222. doi: 10.1038/nchem.544
  • Recker J, Vögtle F. Amide-Based Molecular Knots. J Incl Phenom Macrocyclic Chem. 2001;41:3–5. doi: 10.1023/A:1014438109938
  • Safarowsky O, Nieger M, Fröhlich R, et al. A molecular knot with twelve amide groups—one-step synthesis, crystal structure, chirality. Angew Chem Int Ed. 2000;39(9):1616–1618. doi: 10.1002/(SICI)1521-3773(20000502)39:9<1616::AID-ANIE1616>3.0.CO;2-Y
  • Feigel M, Ladberg R, Engels S, et al. A trefoil knot made of amino acids and steroids. Angew Chem Int Ed. 2006;45(34):5698–5702. doi: 10.1002/anie.200601111
  • Barran PE, Cole HL, Goldup SM, et al. Active-metal template synthesis of a molecular trefoil knot. Angew Chem Int Ed. 2011;50(51):12280–12284. doi: 10.1002/anie.201105012
  • Ponnuswamy N, Cougnon FBL, Clough JM, et al. Discovery of an organic trefoil knot. Science. 2012;338(6108):783–785. doi: 10.1126/science.1227032
  • Ayme J-F, Gil-Ramírez G, Leigh DA, et al. Lanthanide template synthesis of a molecular trefoil knot. J Am Chem Soc. 2014;136(38):13142–13145. doi: 10.1021/ja506886p
  • Segawa Y, Kuwayama M, Hijikata Y, et al. Topological molecular nanocarbons: All-benzene catenane and trefoil knot. Science. 2019;365(6450):272–276. doi: 10.1126/science.aav5021
  • Wu L, Tang M, Jiang L, et al. Synthesis of contra-helical trefoil knots with mechanically tuneable spin-crossover properties. Nat Synth. 2022;2(1):17–25. doi: 10.1038/s44160-022-00173-7
  • Ayme J-F, Beves JE, Leigh DA, et al. Pentameric circular iron(II) double helicates and a molecular pentafoil knot. J Am Chem Soc. 2012;134(22):9488–9497. doi: 10.1021/ja303355v
  • Ayme J-F, Beves JE, Leigh DA, et al. A synthetic molecular pentafoil knot. Nat Chem. 2012;4(1):15–20. doi: 10.1038/nchem.1193
  • Ponnuswamy N, Cougnon FBL, Pantoş GD, et al. Homochiral and meso figure eight knots and a Solomon link. J Am Chem Soc. 2014;136(23):8243–8251. doi: 10.1021/ja4125884
  • Leigh DA, Danon JJ, Fielden SDP, et al. A molecular endless (74) knot. Nat Chem. 2021;13(2):117–122. doi: 10.1038/s41557-020-00594-x
  • Zhang L, August DP, Zhong J, et al. Molecular trefoil knot from a trimeric circular helicate. J Am Chem Soc. 2018;140(15):4982–4985. doi: 10.1021/jacs.8b00738
  • Zhang L, Stephens AJ, Nussbaumer AL, et al. Stereoselective synthesis of a composite knot with nine crossings. Nat Chem. 2018;10(11):1083–1088. doi: 10.1038/s41557-018-0124-6
  • Leigh DA, Pirvu L, Schaufelberger F. Stereoselective synthesis of molecular square and granny knots. J Am Chem Soc. 2019;141(14):6054–6059. doi: 10.1021/jacs.9b01819
  • Danon JJ, Krüger A, Leigh DA, et al. Braiding a molecular knot with eight crossings. Science. 2017;355(6321):159–162. doi: 10.1126/science.aal1619
  • Rapenne G, Dietrich-Buchecker C, Sauvage J-P. Resolution of a molecular trefoil knot. J Am Chem Soc. 1996;118(44):10932–10933. doi: 10.1021/ja961898o
  • Zhang G, Gil-Ramírez G, Markevicius A, et al. Lanthanide template synthesis of trefoil knots of single handedness. J Am Chem Soc. 2015;137(32):10437–10442. doi: 10.1021/jacs.5b07069
  • Gil-Ramírez G, Hoekman S, Kitching MO, et al. Tying a molecular overhand knot of single handedness and asymmetric catalysis with the corresponding pseudo-D3-symmetric trefoil knot. J Am Chem Soc. 2016;138(40):13159–13162. doi: 10.1021/jacs.6b08421
  • Zhang Z-H, Zhou Q, Li Z, et al. Completely stereospecific synthesis of a molecular cinquefoil (51) knot. Chem. 2023;9(4):847–858. doi: 10.1016/j.chempr.2022.11.009
  • Carpenter JP, McTernan CT, Greenfield JL, et al. Controlling the shape and chirality of an eight-crossing molecular knot. Chem. 2021;7(6):1534–1543. doi: 10.1016/j.chempr.2021.03.005
  • Leigh DA, Schaufelberger F, Pirvu L, et al. Tying different knots in a molecular strand. Nature. 2020;584(7822):562–568. doi: 10.1038/s41586-020-2614-0
  • Zhong J, Zhang L, August DP, et al. Self-sorting assembly of molecular trefoil knots of single handedness. J Am Chem Soc. 2019;141(36):14249–14256. doi: 10.1021/jacs.9b06127
  • Ashbridge Z, Kreidt E, Pirvu L, et al. Vernier template synthesis of molecular knots. Science. 2022;375(6584):1035–1041. doi: 10.1126/science.abm9247
  • Götz AW, Williamson MJ, Xu D, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput. 2012;8(5):1542–1555. doi: 10.1021/ct200909j
  • Le Grand S, Götz AW, Walker RC. SPFP: speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun. 2013;184(2):374–380. doi: 10.1016/j.cpc.2012.09.022
  • Bannwarth C, Ehlert S, Grimme S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comput. 2019;15(3):1652–1671. doi: 10.1021/acs.jctc.8b01176
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104. doi: 10.1063/1.3382344
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, revision A.03. Wallingford, CT: Gaussian, Inc. 2016.
  • Lei Y, Li Z, Wu G, et al. A trefoil knot self-templated through imination in water. Nat Commun. 2022;13(1):3557. doi: 10.1038/s41467-022-31289-1
  • Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys. 2010;132(11):114110. doi: 10.1063/1.3359469
  • Lu T, Chen Q. Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak Interactions**. Chem Methods. 2021;1(5):231–239. doi: 10.1002/cmtd.202100007
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580–592. doi: 10.1002/jcc.22885
  • Atcher J, Bujons J, Alfonso I. Entropy-driven homochiral self-sorting of a dynamic library. Chem Commun. 2017;53(30):4274–4277. doi: 10.1039/C7CC01153A
  • Lin S-K. Correlation of entropy with similarity and symmetry. J Chem Inf Comput Sci. 1996;36(3):367–376. doi: 10.1021/ci950077k
  • Sisco S, Moore JS. Homochiral self-sorting of BINOL macrocycles. Chem Sci. 2014;5(1):81–85. doi: 10.1039/C3SC52018H

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.