60
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Cysteine scanning of transmembrane domain three of the human dipeptide transporter: Implications for substrate transport

, , , &
Pages 218-225 | Received 11 Jan 2007, Accepted 15 Feb 2007, Published online: 08 Oct 2008

References

  • Bailey PD, Boyd CA, Bronk JR, Collier ID, Meredith D, Morgan KM, Temple CS. How to make drugs orally active: A substrate template for peptide transporter PepT1. Angew Chem Int Ed Engl 2000; 39: 505–508
  • Balimane PV, Tamai I, Guo A, Nakanishi T, Kitada H, Leibach FH, Tsuji A, Sinko PJ. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem Biophys Res Commun 1998; 250: 246–251
  • Biegel A, Gebauer S, Hartrodt B, Brandsch M, Neubert K, Thondorf I. Three-dimensional quantitative structure–activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem 2005; 48: 4410–4419
  • Bolger MB, Haworth IS, Yeung AK, Ann D, von Grafenstein H, Hamm-Alvarez S, Okamoto CT, Kim KJ, Basu SK, Wu S, Lee VHL. Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. J Pharm Sci 1998; 87: 1286–1291
  • Brandsch M, Knutter I, Leibach FH. The intestinal H+/peptide symporter PEPT1: Structure–affinity relationships. Eur J Pharm Sci 2004; 21: 53–60
  • Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 2004; 66: 361–384
  • Doring F, Will J, Amasheh S, Clauss W, Ahlbrecht H, Daniel H. Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J Biol Chem 1998; 273: 23211–23218
  • Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, Singh SK, Boron WF, Hediger MA. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994; 368: 563–566
  • Heinze M, Monden I, Keller K. Cysteine-scanning mutagenesis of transmembrane segment 1 of glucose transporter GLUT1: Extracellular accessibility of helix positions. Biochemistry 2004; 43: 931–936
  • Hruzand PW, Mueckler M. Cysteine-scanning mutagenesis of transmembrane segment 11 of the GLUT1 facilitative glucose transporter. Biochemistry 2000; 39: 9367–9372
  • Javitch JA, Li X, Kaback J, Karlin A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc Natl Acad Sci USA 1994; 91: 10355–10359
  • Katsura T, Inui K. Intestinal absorption of drugs mediated by drug transporters: Mechanisms and regulation. Drug Metab Pharmacokinet 2003; 18: 1–15
  • Kulkarni AA, Haworth IS, Lee VHL. Transmembrane segment 5 of the dipeptide transporter hPepT1 forms a part of the substrate translocation pathway. Biochem Biophys Res Commun 2003a; 306: 177–185
  • Kulkarni AA, Haworth IS, Uchiyama T, Lee VHL. Analysis of transmembrane segment 7 of the dipeptide transporter hPepT1 by cysteine-scanning mutagenesis. J Biol Chem 2003b; 278: 51833–51840
  • Kulkarni AA, Davies DL, Links JS, Patel LN, Lee VHL, Haworth IS. A charge pair interaction between Arg282 in transmembrane segment 7 and Asp341 in transmembrane segment 8 of the human dipeptide transporter hPepT1. Pharm Res 2007; 24: 66–72
  • Landowski CP, Vig BS, Song X, Amidon GL. Targeted delivery to PEPT1-overexpressing cells: Acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther 2005; 4: 659–667
  • Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, Leibach FH. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J Biol Chem 1995; 270: 6456–6463
  • Lin CJ, Akarawut W, Smith DE. Competitive inhibition of glycylsarcosine transport by enalapril in rabbit renal brush border membrane vesicles: Interaction of ACE inhibitors with high-affinity H+/peptide symporter. Pharm Res 1999; 16: 609–615
  • Li F, Hong L, Mau CI, Chan R, Hendricks T, Dvorak C, Yee C, Harris J, Alfredson T. Transport of levovirin prodrugs in the human intestinal Caco-2 cell line. J Pharm Sci 2006; 95: 1318–1325
  • Lu Q, Miller C. Silver as a probe of pore-forming residues in a potassium channel. Science 1995; 268: 304–307
  • Luckner P, Brandsch M. Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: Analysis of affinity constants and comparison with PEPT1. Eur J Pharm Biopharm 2005; 59: 17–24
  • Mueckler M, Makepeace C. Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the Glut1 glucose transporter. J Biol Chem 2005; 280: 39562–39568
  • Perez-Garcia MT, Chiamvimonvat N, Marban E, Tomaselli GF. Structure of the sodium channel pore revealed by serial cysteine mutagenesis. Proc Natl Acad Sci USA 1996; 93: 300–304
  • Sahin-Toth M, Kaback HR. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci 1993; 2: 1024–1033
  • Song X, Lorenzi PL, Landowski CP, Vig BS, Hilfinger JM, Amidon GL. Amino acid ester prodrugs of the anticancer agent gemcitabine: Synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol Pharm 2005; 2: 157–167
  • Steffansen B, Nielsen CU, Frokjaer S. Delivery aspects of small peptides and substrates for peptide transporters. Eur J Pharm Biopharm 2005; 60: 241–245
  • Temple CS, Boyd CA. Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: A functional analysis using ACE inhibitors to determine the isoform of the transporter. Biochim Biophys Acta 1998; 1373: 277–281
  • Terada T, Inui K. Peptide transporters: Structure, function, regulation and application for drug delivery. Curr Drug Metab 2004; 5: 85–94
  • Thomsen AE, Christensen MS, Bagger MA, Steffansen B. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1: Comparison of in vivo bioavailability in rats and transport in Caco-2 cells. Eur J Pharm Sci 2004; 23: 319–325
  • Vig BS, Stouch TR, Timoszyk JK, Quan Y, Wall DA, Smith RL, Faria TN. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. J Med Chem 2006; 49: 3636–3644
  • Yeung AK, Basu SK, Wu SK, Chu C, Okamoto CT, Hamm-Alvarez SF, von Grafenstein H, Shen WC, Kim KJ, Bolger MB, Haworth IS, Ann DK, Lee VHL. Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton-coupled dipeptide transporter (hPepT1). Biochem Biophys Res Commun 1998; 250: 103–107
  • Zhu T, Chen XZ, Steel A, Hediger MA, Smith DE. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm Res 2000; 17: 526–532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.