1,318
Views
0
CrossRef citations to date
0
Altmetric
Research Article

MicroRNA153 induces apoptosis by targeting NFATc3 to improve vascular remodeling in pulmonary hypertension

, &
Article: 2140810 | Received 16 Jun 2022, Accepted 22 Oct 2022, Published online: 14 Nov 2022

References

  • Kylhammar D, Kjellstrom B, Hjalmarsson C, Jansson K, Nisell M, Soderberg S, Wikstrom G, Radegran G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018;39(47):4175–12.doi:10.1093/eurheartj/ehx257.
  • He RL, Wu ZJ, Liu XR, Gui LX, Wang RX, Lin MJ. Calcineurin/NFAT signaling modulates pulmonary artery smooth muscle cell proliferation, migration and apoptosis in monocrotaline-induced pulmonary arterial hypertension rats. Cell Physiol Biochem. 2018;49(1):172–89.doi:10.1159/000492852.
  • Xiao Y, Chen PP, Zhou RL, Zhang Y, Tian Z, Zhang SY. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: a review. Aging Dis. 2020;11:1623–39.
  • Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17:2205–32.
  • Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brustle A, Itsumi M, et al. Glutathione primes t cell metabolism for inflammation. Immunity. 2017;46:675–89.
  • Robinson P, Sparrow AJ, Patel S, Malinowska M, Reilly SN, Zhang YH, Casadei B, Watkins H, Redwood C. Dilated cardiomyopathy mutations in thin-filament regulatory proteins reduce contractility, suppress systolic Ca(2+), and activate NFAT and Akt signaling. Am J Physiol Heart Circ Physiol. 2020;319:H306–19.
  • Zeng Z, Yao J, Li Y, Xue Y, Zou Y, Shu Z, Jiao Z. Anti-apoptosis endothelial cell-secreted microRNA-195-5p promotes pulmonary arterial smooth muscle cell proliferation and migration in pulmonary arterial hypertension. J Cell Biochem. 2018;119:2144–55.
  • Zhang Q, Fan K, Wang P, Yu J, Liu R, Qi H, Sun H, Cao Y. Carvacrol induces the apoptosis of pulmonary artery smooth muscle cells under hypoxia. Eur J Pharmacol. 2016;770:134–46.
  • Bierer R, Nitta CH, Friedman J, Codianni S, de Frutos S, Dominguez-Bautista JA, Howard TA, Resta TC, Bosc LV. NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. Am J Physiol Lung Cell Mol Physiol. 2011;301:L872–80.
  • Chao CN, Lai CH, Badrealam KF, Lo JF, Shen CY, Chen CH, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. CHIP attenuates lipopolysaccharide-induced cardiac hypertrophy and apoptosis by promoting NFATc3 proteasomal degradation. J Cell Physiol. 2019;234:20128–38.doi:10.1002/jcp.28614.
  • Liao MJ, Lin H, He YW, Zou C. NFATc3 deficiency protects against high fat diet (HFD)-induced hypothalamus inflammation and apoptosis via p38 and JNK suppression. Biochem Biophys Res Commun. 2018;499(4):743–50.doi:10.1016/j.bbrc.2018.03.182.
  • Ran Y, Wu H, Wei L, Yu X, Chen J, Li S, Zhang L, Lou J, Zhu D. NFATc3 pathway participates in the process that 15-LO/15-HETE protects pulmonary artery smooth muscle cells against apoptosis during hypoxia. Journal of Receptors and Signal Transduction. 2014;34(4):270–82.doi:10.3109/10799893.2014.917322.
  • Wang Y, Hao W, Wang H. RETRACTED ARTICLE: miR-557 suppressed the malignant behaviours of osteosarcoma cells by reducing HOXB9 and deactivating the EMT process. Artif Cells Nanomed Biotechnol. 2021;49(1):230–39.doi:10.1080/21691401.2021.1890100.
  • Wang W, Hong G, Wang S, Gao W, Wang P. Tumor-derived exosomal miRNA-141 promote angiogenesis and malignant progression of lung cancer by targeting growth arrest-specific homeobox gene (GAX). Bioengineered. 2021;12(1):821–31.doi:10.1080/21655979.2021.1886771.
  • Afonso-Grunz F, Muller S. Principles of miRNA–mRNA interactions: beyond sequence complementarity. Cellular and Molecular Life Sciences. 2015;72(16):3127–41.doi:10.1007/s00018-015-1922-2.
  • Li Y, Wan D, Guo R, Wang F, Han L, Zhang D, Xing H, Cao W, Liu Y, Xie X, et al.Decreased bone marrow regulatory innate lymphoid cells show a distinctive miRNA profiling in aplastic anemia. Hematology. 2021;26(1):37–42.doi:10.1080/16078454.2020.1866304.
  • Lei S, Peng F, Li M-L, Duan W-B, Peng C-Q, Wu S-J. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2020;319(2):H377–91.doi:10.1152/ajpheart.00717.2019.
  • Chen WJ, Zhang EN, Zhong ZK, Jiang MZ, Yang XF, Zhou DM, Wang XW. MicroRNA-153 expression and prognosis in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(7):8671–75.
  • Zhao S, Deng Y, Liu Y, Chen X, Yang G, Mu Y, Zhang D, Kang J, Wu Z. MicroRNA-153 is tumor suppressive in glioblastoma stem cells. Mol Biol Rep. 2013;40:2789–98.doi:10.1007/s11033-012-2278-4.
  • Zhao M, Wang W, Lu Y, Wang N, Kong D, Shan L. MicroRNA153 attenuates hypoxiainduced excessive proliferation and migration of pulmonary arterial smooth muscle cells by targeting ROCK1 and NFATc3. Mol Med Rep. 2021 23 ;194.
  • Toba M, Alzoubi A, O’Neill KD, Gairhe S, Matsumoto Y, Oshima K, Abe K, Oka M, McMurtry IF. Temporal hemodynamic and histological progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial hypertensive rats. Am J Physiol Heart Circ Physiol. 2014;306(2):H243–50.doi:10.1152/ajpheart.00728.2013.
  • Chen R, Yan J, Liu P, Wang Z, Wang C, Zhong W, Xu L. The role of nuclear factor of activated T cells in pulmonary arterial hypertension. Cell Cycle. 2017;16(6):508–14.doi:10.1080/15384101.2017.1281485.
  • Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M. Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation. 2010;121(25):2747–54.doi:10.1161/CIRCULATIONAHA.109.927681.
  • Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signalling. Respirology. 2016;21(3):526–32.doi:10.1111/resp.12712.
  • Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, Lacasse Y, Bonnet S. Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res. 2018;122(7):1021–32.doi:10.1161/CIRCRESAHA.117.312579.
  • Lv Y, Fu L, Zhang Z, Gu W, Luo X, Zhong Y, Xu S, Wang Y, Yan L, Li M, et al.Increased expression of microRNA-206 inhibits potassium voltage-gated channel subfamily a member 5 in pulmonary arterial smooth muscle cells and is related to exaggerated pulmonary artery hypertension following intrauterine growth retardation in rats. J Am Heart Assoc. 2019;8(2):e10456.doi:10.1161/JAHA.118.010456.
  • Sheak JR, Jones DT, Lantz BJ, Maston LD, Vigil D, Resta TC, Resta MM, Howard TA, Kanagy NL, Guo Y, et al.NFATc3 regulation of collagen V expression contributes to cellular immunity to collagen type V and hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2020;319(6):L968–80.doi:10.1152/ajplung.00184.2020.
  • Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JR, Michelakis ED. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med. 2010;2:44r–58r.
  • Montani D, Chaumais MC, Guignabert C, Gunther S, Girerd B, Jais X, Algalarrondo V, Price LC, Savale L, Sitbon O, et al. Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther. 2014;141:172–91.
  • Fredenburgh LE, Ma J, Perrella MA. Cyclooxygenase-2 inhibition and hypoxia-induced pulmonary hypertension: effects on pulmonary vascular remodeling and contractility. Trends Cardiovasc Med. 2009;19:31–37.
  • Chan SY, Loscalzo J. Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol. 2008;44:14–30.
  • Shibata A, Uchida K, Kodo K, Miyauchi T, Mikoshiba K, Takahashi T, Yamagishi H. Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis. Heart Vessels. 2019;34:724–34.
  • Liu G, Hao P, Xu J, Wang L, Wang Y, Han R, Ying M, Sui S, Liu J, Li X. Upregulation of microRNA-17-5p contributes to hypoxia-induced proliferation in human pulmonary artery smooth muscle cells through modulation of p21 and PTEN. Respir Res. 2018;19:200.
  • Chen Y, Kuang M, Liu S, Hou C, Duan X, Yang K, He W, Liao J, Zheng Q, Zou G, et al. A novel rat model of pulmonary hypertension induced by mono treatment with SU5416. Hypertens Res. 2020;43:754–64.
  • Kojonazarov B, Hadzic S, Ghofrani HA, Grimminger F, Seeger W, Weissmann N, Schermuly RT. Severe emphysema in the SU5416/Hypoxia rat model of pulmonary hypertension. Am J Respir Crit Care Med. 2019;200:515–18.
  • Suen CM, Chaudhary KR, Deng Y, Jiang B, Stewart DJ. Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure. Cardiovasc Res. 2019;115:788–99.
  • Friedman JK, Nitta CH, Henderson KM, Codianni SJ, Sanchez L, Ramiro-Diaz JM, Howard TA, Giermakowska W, Kanagy NL, Gonzalez BL. Intermittent hypoxia-induced increases in reactive oxygen species activate NFATc3 increasing endothelin-1 vasoconstrictor reactivity. Vascul Pharmacol. 2014;60:17–24.
  • de Frutos S, Diaz JM, Nitta CH, Sherpa ML, Bosc LV. Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J Physiol Cell Physiol. 2011;301:C441–50.
  • Kang K, Peng X, Zhang X, Wang Y, Zhang L, Gao L, Weng T, Zhang H, Ramchandran R, Raj JU, et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem. 2013;288:25414–27.
  • Hao S, Jiang L, Fu C, Wu X, Liu Z, Song J, Lu H, Wu X, Li S. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223. J Cell Physiol. 2019;234:6324–35.
  • Wang LN, Yu WC, Du CH, Tong L, Cheng ZZ. Hypoxia is involved in hypoxic pulmonary hypertension through inhibiting the activation of FGF2 by miR-203. Eur Rev Med Pharmacol Sci. 2018;22:8866–76.
  • Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492.
  • Guignabert C, Tu L, Izikki M, Dewachter L, Zadigue P, Humbert M, Adnot S, Fadel E, Eddahibi S. Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. Faseb J. 2009;23:4135–47.
  • Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA. 2007;104:11418–23.
  • Weatherald J, Lategan J, Helmersen D. Pulmonary arterial hypertension secondary to adult-onset Still’s disease: response to cyclosporine and sildenafil over 15 years of follow-up. Respir Med Case Rep. 2016;19:27–30.