2,262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of potassium channel knockdown on peripheral blood T lymphocytes and NFAT signaling pathway in Xinjiang Kazak patients with hypertension

, , , &
Article: 2169449 | Received 31 Mar 2022, Accepted 11 Jan 2023, Published online: 23 Jan 2023

References

  • Mancusi C, Losi MA, Izzo R, Canciello G, Carlino MV, Albano G, De Luca N, Trimarco B, de Simone G. Higher pulse pressure and risk for cardiovascular events in patients with essential hypertension: the Campania salute network. Eur J Prev Cardiol. 2018;25(3):235–10. doi:10.1177/2047487317747498
  • Ye Y, Yang J, Lv W, Lu Y, Zhang L, Zhang Y, Musha Z, Fan P, Yang B, Zhou X, et al. Screening of differentially expressed microRNAs of essential hypertension in Uyghur population. Lipids Health Dis. 2019;18(1):98. doi:10.1186/s12944-019-1028-1.
  • Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441–50. doi:10.1161/CIRCULATIONAHA.115.018912
  • Lu J, Lu Y, Wang X, Li X, Linderman GC, Wu C, Cheng X, Mu L, Zhang H, Liu J, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE million persons project). Lancet. 2017;390(10112):2549–58. doi:10.1016/S0140-6736(17)32478-9.
  • Hu Y, Wang Z, Wang Y, Wang L, Han W, Tang Y, Xue F, Hou L, Liang S, Zhang B, et al. Prevalence, awareness, treatment, and control of hypertension among Kazakhs with high salt intake in Xinjiang, China: a community-based cross-sectional study. Sci Rep. 2017;7(1):45547. doi:10.1038/srep45547.
  • Liu F, Ma Y, Yang Y, Xie X, Li X-M, Huang Y, Ma X, Chen B-D, Gao X, Du L. Epidemiological survey on the current status of hypertension in different ethnic groups in Xinjiang. Chin Med J. 2010;90(46):3259–62.
  • Zhang Q, Mahapatra T, Huang F, Tang W, Guo Y, Tang S, Lei Y, Feng L, Wang A, Zhang L, et al. Association between anthropometric measures and indicators for hypertension control among Kazakh-Chinese hypertension patients in Xinjiang, China: results from a cross-sectional study. PLoS One. 2017;12(1):e0170959. doi:10.1371/journal.pone.0170959.
  • Ma S, Yang L, Zhao M, Magnussen CG, Xi B. Trends in hypertension prevalence, awareness, treatment and control rates among Chinese adults, 1991-2015. J Hypertens. 2021;39(4):740–48. doi:10.1097/hjh.0000000000002698
  • Li T, Song X, Wu J, Li Z, Li L, Yu Y, Wells GA, Liu B. Awareness of hypertension and related factors in northeastern China: a cross-sectional study. J Hum Hypertens. 2020;34(1):43–50. doi:10.1038/s41371-019-0263-2
  • Andriolo V, Dietrich S, Knüppel S, Bernigau W, Boeing H. Traditional risk factors for essential hypertension: analysis of their specific combinations in the EPIC-Potsdam cohort. Sci Rep. 2019;9(1):1501. doi:10.1038/s41598-019-38783-5
  • Solak Y, Afsar B, Vaziri ND, Aslan G, Yalcin CE, Covic A, Kanbay M. Hypertension as an autoimmune and inflammatory disease. Hypertens Res. 2016;39(8):567–73. doi:10.1038/hr.2016.35
  • Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between angiotensin II, TLR4 and hypertension. Pharmacol Res. 2017;120:88–96. 10.1016/j.phrs.2017.03.017.
  • Ni X, Wang A, Zhang L, Shan LY, Zhang HC, Li L, Si JQ, Luo J, Li XZ, Ma KT. Up-regulation of gap junction in peripheral blood T lymphocytes contributes to the inflammatory response in essential hypertension. PLoS One. 2017;12(9):e0184773. doi:10.1371/journal.pone.0184773
  • Chen S, Agrawal DK. Dysregulation of T cell subsets in the pathogenesis of hypertension. Curr Hypertens Rep. 2015;17(2):8. doi:10.1007/s11906-014-0521-1
  • Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. doi:10.1084/jem.20070657
  • Crowley SD, Song YS, Lin EE, Griffiths R, Kim HS, Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R1089–1097. doi:10.1152/ajpregu.00373.2009
  • Chen R, Yan J, Liu P, Wang Z, Wang C, Zhong W, Xu L. The role of nuclear factor of activated T cells in pulmonary arterial hypertension. Cell Cycle. 2017;16(6):508–14. doi:10.1080/15384101.2017.1281485
  • Nieves-Cintron M, Amberg GC, Nichols CB, Molkentin JD, Santana LF. Activation of NFATc3 down-regulates the beta1 subunit of large conductance, calcium-activated K+ channels in arterial smooth muscle and contributes to hypertension. J Biol Chem. 2007;282(5):3231–40. doi:10.1074/jbc.M608822200
  • Vianna-Jorge R, Suarez-Kurtz G. Potassium channels in T lymphocytes: therapeutic targets for autoimmune disorders? BioDrugs. 2004;18(5):329–41. doi:10.2165/00063030-200418050-00005
  • Trebak M, Kinet JP. Calcium signalling in T cells. Nat Rev Immunol. 2019;19(3):154–69. doi:10.1038/s41577-018-0110-7
  • Hogan PG. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium. 2017;63:66–69. 10.1016/j.ceca.2017.01.014.
  • Bremer S, Vethe NT, Skauby M, Kasbo M, Johansson ED, Midtvedt K, Bergan S. NFAT-regulated cytokine gene expression during tacrolimus therapy early after renal transplantation. Br J Clin Pharmacol. 2017;83(11):2494–502. doi:10.1111/bcp.13367
  • Luo J, Zhang YM, Ma KT, Si JQ, Liang P. Difference in the expression of Kv channel in lymphocytes between spontaneously hypertensive rats and wistar rats. Sheng Li Xue Bao. 2010;62(4):382–86.
  • Yan LJ, Yang HT, Duan HY, Wu JT, Fan XW, Wang SL, Qiu CG. Analysis on the relationship and mechanism of high blood pressure and vascular aging on the condition that the gender and age matches. Eur Rev Med Pharmacol Sci. 2017;21(3 Suppl):84–87.
  • Dai XJ, Zhang YM, Hou XL. The expression of peripheral blood lymphocytes Kv1.3 channel in patients with hypertension in Xinjiang Kazakh. Zhonghua Gao Xue Ya Za Zhi. 2012;20:175–78.
  • Zhang Q, Gou F, Zhang Y, He Y, He J, Peng L, Cheng L, Yuan Q, Zhang G, Huang S. Potassium channel changes of peripheral blood T-lymphocytes from Kazakh hypertensive patients in Northwest China and the inhibition effect towards potassium channels by telmisartan. Kardiol Pol. 2016;74(5):476–88. doi:10.5603/KP.a2015.0210
  • Şimşek B, Altay S, Özbilgin N, Onat A. Autoimmune activation as a determinant of atrial fibrillation among Turks: a prospective evaluation. Medicine (Baltimore). 2018;97(31):e11779. doi:10.1097/md.0000000000011779
  • Dai W, Zhang Z, Zhao S. Baseline levels of serum high sensitivity C reactive protein and lipids in predicting the residual risk of cardiovascular events in Chinese population with stable coronary artery disease: a prospective cohort study. Lipids Health Dis. 2018;17(3 Suppl):273. doi:10.1186/s12944-018-0923-1
  • Slíva J, Charalambous C, Bultas J, Karetová D. A new strategy for the treatment of atherothrombosis - inhibition of inflammation. Physiol Res. 2019;68:S17–s30. 10.33549/physiolres.934327.
  • Del Pinto R, Ferri C. Inflammation-accelerated senescence and the cardiovascular system: mechanisms and perspectives. Int J Mol Sci. 2018;19(12):3701. doi:10.3390/ijms19123701
  • Czopek A, Moorhouse R, Guyonnet L, Farrah T, Lenoir O, Owen E, van Bragt J, Costello HM, Menolascina F, Baudrie V, et al. A novel role for myeloid endothelin-B receptors in hypertension. Eur Heart J. 2019;40(9):768–84. doi:10.1093/eurheartj/ehy881.
  • Kirabo A. A new paradigm of sodium regulation in inflammation and hypertension. Am J Physiol Regul Integr Comp Physiol. 2017;313(6):R706–R710. doi:10.1152/ajpregu.00250.2017
  • Rudemiller NP, Crowley SD. The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res. 2017;119:404–11. 10.1016/j.phrs.2017.02.026.
  • Elsaafien K, Korim WS, Setiadi A, May CN, Yao ST. Chemoattraction and recruitment of activated immune cells, central autonomic control, and blood pressure regulation. Front Physiol. 2019;10:984. 10.3389/fphys.2019.00984.
  • Fung-Leung WP, Edwards W, Liu Y, Ngo K, Angsana J, Castro G, Wu N, Liu X, Swanson RV, Wickenden AD. T cell subset and stimulation strength-dependent modulation of T cell activation by Kv1.3 blockers. PLoS One. 2017;12(1):e0170102. doi:10.1371/journal.pone.0170102
  • Lioudyno V, Abdurasulova I, Negoreeva I, Stoliarov I, Kudriavtsev I, Serebryakova M, Klimenko V, Lioudyno M. A common genetic variant rs2821557 in KCNA3 is linked to the severity of multiple sclerosis. J Neurosci Res. 2021;99(1):200–08. doi:10.1002/jnr.24596
  • Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik EY. Inhibition of the K + channel KCa3.1 ameliorates T cell–mediated colitis. Proc Natl Acad Sci U S A. 2010; 107(4):1541–46. doi:10.1073/pnas.0910133107.
  • Bengsch B, Wherry EJ. The importance of cooperation: partnerless NFAT induces T cell exhaustion. Immunity. 2015;42(2):203–05. doi:10.1016/j.immuni.2015.01.023
  • Kiani A, Rao A, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity. 2000;12(4):359–72. doi:10.1016/s1074-7613(00)80188-0
  • Singh DK, Dwivedi VP, Ranganathan A, Bishai WR, Van Kaer L, Das G. Blockade of the Kv1.3 K + channel enhances BCG vaccine efficacy by expanding central memory T lymphocytes. J Infect Dis. 2016;214(9):1456–64. doi:10.1093/infdis/jiw395
  • Singh DK, Dwivedi VP, Singh SP, Kumari A, Sharma SK, Ranganathan A, Kaer LV, Das G, Lewinsohn DM. Luteolin-mediated Kv1.3 K+ channel inhibition augments BCG vaccine efficacy against tuberculosis by promoting central memory T cell responses in mice. PLoS Pathog. 2020;16(9):e1008887. doi:10.1371/journal.ppat.1008887
  • Khodoun M, Chimote AA, Ilyas FZ, Duncan HJ, Moncrieffe H, Kant KS, Conforti L. Targeted knockdown of Kv1.3 channels in T lymphocytes corrects the disease manifestations associated with systemic lupus erythematosus. Sci Adv. 2020;6. doi:10.1126/sciadv.abd1471.
  • Chiang EY, Li T, Jeet S, Peng I, Zhang J, Lee WP, DeVoss J, Caplazi P, Chen J, Warming S, et al. Potassium channels Kv1.3 and KCa3.1 cooperatively and compensatorily regulate antigen-specific memory T cell functions. Nat Commun. 2017;8(1):14644. doi:10.1038/ncomms14644.
  • Chimote AA, Hajdu P, Kottyan LC, Harley JB, Yun Y, Conforti L. Nanovesicle-targeted Kv1.3 knockdown in memory T cells suppresses CD40L expression and memory phenotype. J Autoimmun. 2016;69:86–93. 10.1016/j.jaut.2016.03.004.
  • Naya M, Tsukamoto T, Morita K, Katoh C, Furumoto T, Fujii S, Tamaki N, Tsutsui H. Plasma interleukin-6 and tumor necrosis factor-alpha can predict coronary endothelial dysfunction in hypertensive patients. Hypertens Res. 2007;30(6):541–48. doi:10.1291/hypres.30.541
  • Gibas-Dorna M, Nowak D, Piatek J, Pupek-Musialik D, Krauss H, Kopczynski P. Plasma ghrelin and interleukin-6 levels correlate with body mass index and arterial blood pressure in males with essential hypertension. J Physiol Pharmacol. 2015;66(3):367–72.
  • Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E, Harrison DG, McDonough AA. Renal transporter activation during angiotensin-II hypertension is blunted in Interferon-γ −/− and Interleukin-17A −/− mice. Hypertension. 2015;65(3):569–76. doi:10.1161/hypertensionaha.114.04975
  • Lee JW, Oh JE, Rhee KJ, Yoo BS, Eom YW, Park SW, Lee JH, Son JW, Youn YJ, Ahn MS, et al. Co-treatment with interferon-gamma and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem. 2019;458(1–2):197–205. doi:10.1007/s11010-019-03542-7.