1,596
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association of Circular RNAs levels in blood and Essential Hypertension with Carotid Plaque

, , , , , & show all
Article: 2180020 | Received 11 Oct 2022, Accepted 08 Feb 2023, Published online: 26 Feb 2023

References

  • Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, White IR, Caulfield MJ, Deanfield JE, Smeeth L, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet. 2014;383(9932):1899–9. doi:10.1016/S0140-6736(14)60685-1.
  • Cuspidi C, Sala C, Tadic M, Gherbesi E, Grassi G, Mancia G. 2019. Pre-hypertension and subclinical carotid damage: a meta-analysis. J Hum Hypertens. 33(1):34–40. doi:10.1038/s41371-018-0114-6
  • Libby P, Ridker PM, Hansson GK. 2011. Progress and challenges in translating the biology of atherosclerosis. Nature. 473(7347):317–25. doi:10.1038/nature10146
  • Li W, Zhao J, Song L, Chen S, Liu X, Wu S. 2020. Combined effects of carotid plaques and hypertension on the risk of cardiovascular disease and all-cause mortality. Clin Cardiol. 43(7):715–22. doi:10.1002/clc.23372
  • Schweiger V, Hasimbegovic E, Kastner N, Spannbauer A, Traxler D, Gyöngyösi M, Mester-Tonczar J. Non-coding RNAs in stem cell regulation and cardiac regeneration: current problems and future perspectives. Int J Mol Sci. 2021;22(17). doi:10.3390/ijms22179160
  • Shang F, Guo X, Chen Y, Wang C, Gao J, Wen E, Lai B, Bai L. Endothelial microRNA-483-3p is hypertension-protective. Oxid Med Cell Longev. 2022;2022:3698219.
  • Tang F, Yang TL. MicroRNA-126 alleviates endothelial cells injury in atherosclerosis by restoring autophagic flux via inhibiting of PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 2018;495(1):1482–89.
  • Liu G, Li Y, Gao XG. microRNA-181a is upregulated in human atherosclerosis plaques and involves in the oxidative stress-induced endothelial cell dysfunction through direct targeting Bcl-2. Eur Rev Med Pharmacol Sci. 2016;20(14):3092–100.
  • Minin EOZ, Paim LR, Lopes ECP, Bueno LCM, Carvalho-Romano L, Marques ER, Vegian CFL, Pio-Magalhães JA, Coelho-Filho OR, Sposito AC, et al. Association of circulating miR-145-5p and miR-let7c and atherosclerotic plaques in hypertensive patients. Biomolecules. 2021;11(12):1840. doi:10.3390/biom11121840.
  • Li Z, Ruan Y, Zhang H, Shen Y, Li T, Xiao B. Tumor-suppressive circular RNAs: mechanisms underlying their suppression of tumor occurrence and use as therapeutic targets. Cancer Sci. 2019;110(12):3630–38. doi:10.1111/cas.14211.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–88. doi:10.1038/nature11993.
  • Nemecz M, Alexandru N, Tanko G, Georgescu A. Role of microRNA in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2016;18(12):87. doi:10.1007/s11906-016-0696-8.
  • Wang G, Li Y, Liu Z, Ma X, Li M, Lu Q, Li Y, Lu Z, Niu L, Fan Z, et al. Circular RNA circ_0124644 exacerbates the ox-LDL-induced endothelial injury in human vascular endothelial cells through regulating PAPP-A by acting as a sponge of miR-149-5p. Mol Cell Biochem. 2020;471(1–2):51–61. doi:10.1007/s11010-020-03764-0.
  • Peng K, Jiang P, Du Y, Zeng D, Zhao J, Li M, Xia C, Xie Z, Wu J. Oxidized low-density lipoprotein accelerates the injury of endothelial cells via circ-USP36/miR-98-5p/VCAM1 axis. IUBMB Life. 2021;73(1):177–87.
  • Yang L, Yang F, Zhao H, Wang M, Zhang Y. Circular RNA circCHFR facilitates the proliferation and migration of vascular smooth muscle via miR-370/FOXO1/Cyclin D1 pathway. Mol Ther Nucleic Acids. 2019;16:434–41. doi:10.1016/j.omtn.2019.02.028.
  • Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, et al. Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation. Circulation. 2021;143(4):354–71. doi:10.1161/CIRCULATIONAHA.120.049715.
  • Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, Zhang L. A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun. 2018;498(4):789–94. doi:10.1016/j.bbrc.2018.03.059.
  • Williams B, Mancia G, Spiering W, Agabiti RE, Azizi M, Burnier M, Clement D, Coca A, De SG, Dominiczak A, et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36(12):2284–309.doi:10.1097/HJH.0000000000001961.
  • Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis 2012;34:290–96.
  • Zhong S, Wang J, Zhang Q, Xu H, Feng J. CircPrimer: a software for annotating circRNAs and determining the specificity of circRNA primers. BMC Bioinform. 2018;19(1):292. doi:10.1186/s12859-018-2304-1.
  • Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34–42. doi:10.1080/15476286.2015.1128065.
  • Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16(7):899–905. doi:10.1080/15476286.2019.1600395.
  • Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2020;48:D148–d154.
  • Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet. 2015;49:213–42.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi:10.1101/gr.1239303.
  • Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–221.
  • Hong H, Wang H, Liao H. Prehypertension is associated with increased carotid atherosclerotic plaque in the community population of Southern China. BMC Cardiovasc Disord. 2013;13:20.
  • Piskorz D. Hypertensive Mediated Organ Damage and Hypertension Management. How to Assess Beneficial Effects of Antihypertensive Treatments? High Blood Press Cardiovasc Prev. 2020;27(1):9–17. doi:10.1007/s40292-020-00361-6.
  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. 2019. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20(11):675–91. doi:10.1038/s41576-019-0158-7
  • Wen Y, Chun Y, Lian ZQ, Yong ZW, Lan YM, Huan L, Xi CY, Juan LS, Qing ZW, Jia C, et al. circRNA‑0006896‑miR1264‑DNMT1 axis plays an important role in carotid plaque destabilization by regulating the behavior of endothelial cells in atherosclerosis. Mol Med Rep. 2021;23(5):548.
  • Hou X, Dai H, Zheng Y. Circular RNA hsa_circ_0008896 accelerates atherosclerosis by promoting the proliferation, migration and invasion of vascular smooth muscle cells via hsa-miR-633/CDC20B (cell division cycle 20B) axis. Bioengineered. 2022;13(3):5987–98. doi:10.1080/21655979.2022.2039467.
  • Yu X, Chen C, Guo Y, Tong Y, Zhao Y, Wu L, Sun X, Wu X, Song Z. High NAFLD fibrosis score in non-alcoholic fatty liver disease as a predictor of carotid plaque development: a retrospective cohort study based on regular health check-up data in China. Ann Med. 2021;53(1):1621–31. doi:10.1080/07853890.2021.1974081.
  • Yin JH, Song ZY, Shan PF, Xu J, Ye ZM, Xu XH, Zhang SZ, Liang Q, Zhao Y, Ren Z, et al. Age- and gender-specific prevalence of carotid atherosclerosis and its association with metabolic syndrome in Hangzhou, China. Clin Endocrinol (Oxf) 2012;76:802–09.
  • Johnsen SH, Mathiesen EB, Fosse E, Joakimsen O, Stensland-Bugge E, Njølstad I, Arnesen E. Elevated high-density lipoprotein cholesterol levels are protective against plaque progression: a follow-up study of 1952 persons with carotid atherosclerosis the Tromsø study. Circulation. 2005;112(4):498–504. doi:10.1161/CIRCULATIONAHA.104.522706.
  • Rundek T, Gardener H, Della-Morte D, Dong C, Cabral D, Tiozzo E, Roberts E, Crisby M, Cheung K, Demmer R, et al. The relationship between carotid intima-media thickness and carotid plaque in the Northern Manhattan Study. Atherosclerosis. 2015;241(2):364–70. doi:10.1016/j.atherosclerosis.2015.05.027.
  • Brunelli N, Altamura C, Costa CM, Altavilla R, Palazzo P, Maggio P, Marcosano M, Vernieri F. Carotid Artery Plaque Progression: proposal of a New Predictive Score and Role of Carotid Intima-Media Thickness. Int J Environ Res Public Health. 2022;19(2):8798.
  • Takiuchi S, Kamide K, Miwa Y, Tomiyama M, Yoshii M, Matayoshi T, Horio T, Kawano Y. Diagnostic value of carotid intima-media thickness and plaque score for predicting target organ damage in patients with essential hypertension. J Hum Hypertens. 2004;18(1):17–23.
  • Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 2014;15(6):9331–42. doi:10.3390/ijms15069331.
  • Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bär C, Lu D, Xiao K, Vea À, Nasarre L, Sanchez Vega J, Leta R, et al. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. Faseb J 2020;34:4403–14.
  • Lu Y, Li K, Gao Y, Liang W, Wang X, Chen L. CircRNAs in gastric cancer: current research and potential clinical implications. FEBS Lett. 2021;595(21):2644–54. doi:10.1002/1873-3468.14196.
  • Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther. 2021. doi:10.1007/s10557-021-07228-5.
  • Zhang CF, Kang K, Li XM, Xie BD. 2015. MicroRNA-136 Promotes Vascular Muscle Cell Proliferation Through the ERK1/2 Pathway by Targeting PPP2R2A in Atherosclerosis. Curr Vasc Pharmacol. 13(3):405–12. doi:10.2174/1570161112666141118094612
  • Vindis C, Escargueil-Blanc I, Uchida K, Elbaz M, Salvayre R, Negre-Salvayre A. 2007. Lipid oxidation products and oxidized low-density lipoproteins impair platelet-derived growth factor receptor activity in smooth muscle cells: implication in atherosclerosis. Redox Rep. 12(1):96–100. doi:10.1179/135100007x162248
  • Irvine CD, George SJ, Sheffield E, Johnson JL, Davies AH, Lamont PM. The association of platelet-derived growth factor receptor expression, plaque morphology and histological features with symptoms in carotid atherosclerosis. Cardiovasc Surg. 2000;8(2):121–29. doi:10.1016/S0967-2109(99)00090-3.
  • Chandra NC. 2020. Atherosclerosis and carcinoma: two facets of dysfunctional cholesterol homeostasis. J Biochem Mol Toxicol. 34(12):e22595. doi:10.1002/jbt.22595
  • Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell WD, Rogers TJ, Datta PK, Ouimet M, Moore KJ, Autieri MV. 2016. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am J Pathol. 186(5):1361–74. doi:10.1016/j.ajpath.2015.12.023
  • Visser MR, Vercellotti GM. Herpes simplex virus and atherosclerosis. Eur Heart J. 1993;14(Suppl K):39–42.
  • Wu YP, Sun DD, Wang Y, Liu W, Yang J. Herpes Simplex Virus Type 1 and Type 2 Infection Increases Atherosclerosis Risk: evidence Based on a Meta-Analysis. Biomed Res Int. 2016;2016:2630865. doi:10.1155/2016/2630865.