1,842
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Paeonol improves renal and vascular angiotensin II type 1 receptor function via inhibiting oxidative stress in spontaneously hypertensive rats

, , &
Article: 2182884 | Received 18 Jan 2023, Accepted 15 Feb 2023, Published online: 28 Feb 2023

References

  • Doroszko A, Janus A, Szahidewicz-Krupska E, Mazur G, Derkacz A. Resistant hypertension. Adv Clin Exp Med. 2016;25:173–8. doi:10.17219/acem/58998.
  • Kokubo Y, Matsumoto C. Hypertension is a risk factor for several types of heart disease: review of prospective studies. Adv Exp Med Biol. 2017;956:419–26. doi:10.1007/5584_2016_99.
  • Wang JG, Li Y. Characteristics of hypertension in the Chinese population. Curr Hypertens Rep. 2012;14:410–15. doi:10.1007/s11906-012-0288-1.
  • Zanchetti A. Blood vessels and the kidney in hypertension. J Hypertens. 2017;35:2333–34. doi:10.1097/HJH.0000000000001592.
  • Damkjaer M, Jensen PH, Schwammle V, Sprenger RR, Jacobsen IA, Jensen ON, Bie P. Selective renal vasoconstriction, exaggerated natriuresis and excretion rates of exosomic proteins in essential hypertension. Acta Physiol. 2014;212:106–18. doi:10.1111/apha.12345.
  • Schiffrin EL. How structure, mechanics, and function of the vasculature contribute to blood pressure elevation in hypertension. Can J Cardiol. 2020;36:648–58. doi:10.1016/j.cjca.2020.02.003.
  • Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017;28:1040–49. doi:10.1681/ASN.2016070734.
  • Su C, Xue J, Ye C, Chen A. Role of the central reninangiotensin system in hypertension (Review). Int J Mol Med. 2021;47. doi:10.3892/ijmm.2021.4928.
  • Collett JA, Hart AK, Patterson E, Kretzer J, Osborn JL. Renal angiotensin II type 1 receptor expression and associated hypertension in rats with minimal SHR nuclear genome. Physiol Rep. 2013;1:e00104. doi:10.1002/phy2.104.
  • Hayakawa Y, Komaki H, Minatoguchi S, Yamada Y, Kanamori H, Nishigaki K, Minatoguchi S. High-salt intake accelerates functional and histological renal damage associated with renal tissue overexpression of (pro)renin receptors and AT1 receptors in spontaneously hypertensive rats. Clin Exp Nephrol. 2020;24:582–89. doi:10.1007/s10157-020-01888-7.
  • Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev. 2015;11:132–42. doi:10.2174/1573402111666150529130922.
  • Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, Helmstadter J, Steven S, Kuntic M, Daiber A, et al. Angiotensin II induces oxidative stress and endothelial dysfunction in mouse ophthalmic arteries via involvement of AT1 receptors and NOX2. Antioxidants. 2021;10:1238. doi:10.3390/antiox10081238.
  • Chugh G, Lokhandwala MF, Asghar M. Altered functioning of both renal dopamine D1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension. 2012;59:1029–36. doi:10.1161/HYPERTENSIONAHA.112.192302.
  • Luo H, Wang X, Wang J, Chen C, Wang N, Xu Z, Chen S, Zeng C. Chronic NF-kappaB blockade improves renal angiotensin II type 1 receptor functions and reduces blood pressure in Zucker diabetic rats. Cardiovasc Diabetol. 2015;14:76. doi:10.1186/s12933-015-0239-7.
  • Koba S, Watanabe R, Kano N, Watanabe T. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II. Am J Physiol Heart Circ Physiol. 2013;304:H142–153. doi:10.1152/ajpheart.00423.2012.
  • Chugh G, Lokhandwala MF, Asghar M. Oxidative stress alters renal D1 and AT1 receptor functions and increases blood pressure in old rats. Am J Physiol Renal Physiol. 2011;300:F133–138. doi:10.1152/ajprenal.00465.2010.
  • Garcia IM, Altamirano L, Mazzei L, Fornes M, Cuello-Carrion FD, Ferder L, Manucha W. Vitamin D receptor-modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels. Cell Stress Chaperones. 2014;19:479–91. doi:10.1007/s12192-013-0474-3.
  • Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, Wang L, Zhao L, Huang Y. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARdelta signaling pathway. Biochem Pharmacol. 2016;116:51–62. doi:10.1007/s12192-013-0474-3.
  • Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609. doi:10.1038/s41419-019-1849-x.
  • Wu H, Song A, Hu W, Dai M. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway. Front Pharmacol. 2017;8:948. doi:10.3389/fphar.2017.00948.
  • Wang X, Luo H, Chen C, Chen K, Wang J, Cai Y, Zheng S, Yang X, Zhou L, Jose PA, et al. Prenatal lipopolysaccharide exposure results in dysfunction of the renal dopamine D1 receptor in offspring. Free Radic Biol Med. 2014;76:242–50. doi:10.1016/j.freeradbiomed.2014.08.010.
  • Zou X, Wang J, Chen C, Tan X, Huang Y, Jose PA, Yang J, Zeng C. Secreted monocyte miR-27a, via mesenteric arterial mas receptor-eNOS pathway, causes hypertension. Am J Hypertens. 2020;33:31–42. doi:10.1093/ajh/hpz112.
  • Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, Yao X, Wang N, Huang Y. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5’ adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler Thromb Vasc Biol. 2014;34:830–36. doi:10.1161/ATVBAHA.113.301938.
  • Boulestreau R, van den Born BH, Lip GYH, Gupta A. Malignant Hypertension: current Perspectives and Challenges. J Am Heart Assoc. 2022;11:e023397. doi:10.1161/JAHA.121.023397.
  • Fuchs FD, Whelton PK. High Blood Pressure and Cardiovascular Disease. Hypertension. 2020;75:285–92. doi:10.1161/HYPERTENSIONAHA.119.14240.
  • Kolwelter J, Uder M, Schmieder RE. Tissue sodium content in hypertension and related organ damage. J Hypertens. 2020;38:2363–68. doi:10.1097/HJH.0000000000002580.
  • Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529–39. doi:10.1093/cvr/cvy023.
  • Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116:960–75. doi:10.1161/CIRCRESAHA.116.303587.
  • Luo H, Wang X, Chen C, Wang J, Zou X, Li C, Xu Z, Yang X, Shi W, Zeng C. Oxidative stress causes imbalance of renal renin angiotensin system (RAS) components and hypertension in obese Zucker rats. J Am Heart Assoc. 2015;4. doi:10.1161/JAHA.114.001559.
  • Mowry FE, Peaden SC, Stern JE, Biancardi VC. TLR4 and AT1R mediate blood-brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats. Pharmacol Res. 2021;174:105877. doi:10.1016/j.phrs.2021.105877.
  • Takimoto-Ohnishi E, Murakami K. Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci. 2019;69:581–87. doi:10.1007/s12576-019-00679-4.
  • Pokkunuri I, Chugh G, Rizvi I, Asghar M. Age-related hypertension and salt sensitivity are associated with unique cortico-medullary distribution of D1R, AT1R, and NADPH-oxidase in FBN rats. Clin Exp Hypertens. 2015;37:1–7. doi:10.3109/10641963.2014.977489.
  • Li XC, Zhuo JL. Recent updates on the proximal tubule renin-angiotensin system in angiotensin II-dependent hypertension. Curr Hypertens Rep. 2016;18:63. doi:10.1007/s11906-016-0668-z.
  • Lopes FNC, da Cunha NV, de Campos BH, Fattori V, Panis C, Cecchini R, Verri WA, Pinge-Filho P, Martins-Pinge MC. Antioxidant therapy reverses sympathetic dysfunction, oxidative stress, and hypertension in male hyperadipose rats. Life Sci. 2022;295:120405. doi:10.1016/j.lfs.2022.120405.
  • Cristobal-Garcia M, Garcia-Arroyo FE, Tapia E, Osorio H, Arellano-Buendia AS, Madero M, Rodriguez-Iturbe B, Pedraza-Chaverri J, Correa F, Zazueta C, et al. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension. Oxid Med Cell Longev. 2015;2015:535686. doi:10.1155/2015/535686.
  • Banday AA, Marwaha A, Tallam LS, Lokhandwala MF. Tempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats. Diabetes. 2005;54:2219–26. doi:10.2337/diabetes.54.7.2219.
  • Ali Q, Wu Y, Hussain T. Chronic AT2 receptor activation increases renal ACE2 activity, attenuates AT1 receptor function and blood pressure in obese Zucker rats. Kidney Int. 2013;84:931–39. doi:10.1038/ki.2013.193.
  • Sugama I, Kohagura K, Yamazato M, Nakamura T, Shinzato T, Ohya Y. Superoxide dismutase mimetic, tempol, aggravates renal injury in advanced-stage stroke-prone spontaneously hypertensive rats. J Hypertens. 2014;32:534–41. doi:10.1097/HJH.0000000000000064.
  • Yu XJ, Suo YP, Qi J, Yang Q, Li HH, Zhang DM, Yi QY, Zhang J, Zhu GQ, Zhu Z, et al. Interaction between AT1 receptor and NF-kappaB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovasc Toxicol. 2013;13:381–90. doi:10.1007/s12012-013-9219-x.
  • Chen K, Fu C, Chen C, Liu L, Ren H, Han Y, Yang J, He D, Zhou L, Yang Z, et al. Role of GRK4 in the regulation of arterial AT1 receptor in hypertension. Hypertension. 2014;63:289–96. doi:10.1161/HYPERTENSIONAHA.113.01766.