1,980
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ghrelin improves endothelial function and reduces blood pressure in Ang II-induced hypertensive mice: Role of AMPK

, , &
Article: 2208774 | Received 04 Apr 2023, Accepted 25 Apr 2023, Published online: 07 May 2023

References

  • Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021;18(11):785–8. doi:10.1038/s41569-021-00559-8.
  • Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1):975. doi:10.1186/s12889-018-5806-x.
  • Zhou L, Zhang S, Bolor-Erdene E, Wang L, Tian D, Mei Y, Szewczyk-Golec K. NAMPT/SIRT1 attenuate Ang II-induced vascular remodeling and vulnerability to hypertension by inhibiting the ROS/MAPK pathway. Oxid Med Cell Longev. 2020;2020:1974265. doi:10.1155/2020/1974265.
  • Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2017;956:511–40. doi:10.1007/5584_2016_90.
  • Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35(11):1039–47. doi:10.1038/hr.2012.138.
  • Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol. 2009;157(4):527–36. doi:10.1111/j.1476-5381.2009.00240.x.
  • Scicchitano P, Cortese F, Gesualdo M, De Palo M, Massari F, Giordano P, Ciccone MM. The role of endothelial dysfunction and oxidative stress in cerebrovascular diseases. Free Radic Res. 2019;53(6):579–95. doi:10.1080/10715762.2019.1620939.
  • Mukohda M, Mizuno R, Ozaki H. Increased blood pressure causes lymphatic endothelial dysfunction via oxidative stress in spontaneously hypertensive rats. Hypertension. 2020;76(2):598–606. doi:10.1161/HYPERTENSIONAHA.119.14636.
  • Rodriguez C, Sanchez A, Saenz-Medina J, Munoz M, Hernandez M, Lopez M, Rivera L, Contreras C, Prieto D. Activation of AMP kinase ameliorates kidney vascular dysfunction, oxidative stress and inflammation in rodent models of obesity. Br J Pharmacol. 2021;178(20):4085–103. doi:10.1111/bph.15600.
  • Lee GH, Hoang TH, Jung ES, Jung SJ, Han SK, Chung MJ, Chae SW, Chae HJ. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell. 2020;19(12):e13279. doi:10.1111/acel.13279.
  • Pradhan G, Samson SL, Sun Y. Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care. 2013;16(6):619–24. doi:10.1097/MCO.0b013e328365b9be.
  • Lilleness BM, Frishman WH. Ghrelin and the cardiovascular system. Cardiol Rev. 2016;24(6):288–97. doi:10.1097/CRD.0000000000000113.
  • Lu W, Cai H, Chen Y, Liao X, Zhang L, Ma T, Sun H, Qi Y. Ghrelin inhibited pressure overload-induced cardiac hypertrophy by promoting autophagy via CaMKK/AMPK signaling pathway. Peptides. 2021;136:170446. doi:10.1016/j.peptides.2020.170446.
  • Virdis A, Duranti E, Colucci R, Ippolito C, Tirotta E, Lorenzini G, Bernardini N, Blandizzi C, Taddei S. Ghrelin restores nitric oxide availability in resistance circulation of essential hypertensive patients: role of NAD(P)H oxidase. Eur Heart J. 2015;36:3023–30. doi:10.1093/eurheartj/ehv365.
  • Chaudhary P, Pandey A, Azad CS, Tia N, Singh M, Gambhir IS. Association of oxidative stress and endothelial dysfunction in hypertension. Anal Biochem. 2020;590:113535. doi:10.1016/j.ab.2019.113535.
  • Wang D, Wang C, Wu X, Zheng W, Sandberg K, Ji H, Welch WJ, Wilcox CS. Endothelial dysfunction and enhanced contractility in microvessels from ovariectomized rats: roles of oxidative stress and perivascular adipose tissue. Hypertension. 2014;63(5):1063–69. doi:10.1161/HYPERTENSIONAHA.113.02284.
  • Chen Y, Wang H, Zhang Y, Wang Z, Liu S, Cui L. Pretreatment of ghrelin protects H9c2 cells against hypoxia/reoxygenation-induced cell death via PI3K/AKT and AMPK pathways. Artif Cells, Nanomed Biotechnol. 2019;47(1):2179–87. doi:10.1080/21691401.2019.1620253.
  • Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, Ohtsubo T, Matsumura K, Kitazono T. Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of Ca 2+ -activated K + channels underpins impaired endothelium-dependent hyperpolarization in hypertension. Hypertension. 2017;69(1):143–53. doi:10.1161/HYPERTENSIONAHA.116.07110.
  • Luo H, Lan C, Fan C, Gong X, Chen C, Yu C, Wang J, Luo X, Hu C, Jose PA, et al. Down-regulation of AMPK/PPARδ signalling promotes endoplasmic reticulum stress-induced endothelial dysfunction in adult rat offspring exposed to maternal diabetes. Cardiovasc Res. 2022;118(10):2304–16. doi:10.1093/cvr/cvab280.
  • Ionov MV, Zhukova OV, Yudina YS, Avdonina NG, Emelyanov IV, Kurapeev DI, Zvartau NE, Konradi AO. Value-based approach to blood pressure telemonitoring and remote counseling in hypertensive patients. Blood Press. 2021;30(1):20–30. doi:10.1080/08037051.2020.1813015.
  • Berenyiova A, Balis P, Kluknavsky M, Bernatova I, Cacanyiova S, Puzserova A, Murdoch C. Age- and hypertension-related changes in NOS/NO/NOS/NO/Sgc-derived vasoactive control of rat thoracic aortae. Oxid Med Cell Longev. 2022;2022:7742509. doi:10.1155/2022/7742509.
  • Marketou ME, Maragkoudakis S, Anastasiou I, Nakou H, Plataki M, Vardas PE, Parthenakis FI. Salt-induced effects on microvascular function: a critical factor in hypertension mediated organ damage. J Clin Hypertens (Greenwich). 2019;21(6):749–57. doi:10.1111/jch.13535.
  • Ferreira Miranda MT, Lemos MP, Sasaki JE, Mota GR, Marocolo M, Sordi CC, Almeida TR, da Silva VJ D, Neto OB. Exercise training ameliorates adrenergic control in spontaneously hypertensive rats. Clin Exp Hypertens. 2021;43(2):101–11. doi:10.1080/10641963.2020.1817474.
  • Camargo-Silva G, Turones LC, da Cruz KR, Gomes KP, Mendonca MM, Nunes A, de Jesus IG, Colugnati DB, Pansani AP, Pobbe RLH, et al. Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response. Life Sci. 2018;196:84–92.
  • Zanetti M, Gortan Cappellari G, Graziani A, Barazzoni R. Unacylated ghrelin improves vascular dysfunction and attenuates atherosclerosis during high-fat diet consumption in rodents. Int J Mol Sci. 2019;20(3):499. doi:10.3390/ijms20030499.
  • El-Shaer NO, El Gazzar WB, Allam MM, Anwer HM. Ghrelin ameliorated inflammation and oxidative stress in isoproterenol induced myocardial infarction through the endothelial nitric oxide synthase (eNOS)/nuclear factor erythroid 2-related factor-2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway. J Physiol Pharmacol. 2021;72(2). doi:10.26402/jpp.2021.2.12.
  • Bai J, Jiang G, Zhao M, Wang S, Stratmann B. Ghrelin mitigates high-glucose-induced oxidative damage and apoptosis in lens epithelial cells. J Diabetes Res. 2022;2022:1373533. doi:10.1155/2022/1373533.
  • Heshmati M, Soltani A, Sanaei MJ, Nahid-Samiei M, Shirzad H, Jami MS, GhatrehSamani M. Ghrelin induces autophagy and CXCR4 expression via the SIRT1/AMPK axis in lymphoblastic leukemia cell lines. Cell Signal. 2020;66:109492. doi:10.1016/j.cellsig.2019.109492.
  • Pearson JT, Collie N, Lamberts RR, Inagaki T, Yoshimoto M, Umetani K, Davis P, Wilkins G, Jones PP, Shirai M, et al. Ghrelin preserves ischemia-induced vasodilation of male rat coronary vessels following β-adrenergic receptor blockade. Endocrinology. 2018;159(4):1763–73. doi:10.1210/en.2017-03070.
  • Rocha NN, de Oliveira MV, Braga CL, Guimaraes G, Maia LA, Padilha GA, Silva JD, Takiya CM, Capelozzi VL, Silva PL, et al. Ghrelin therapy improves lung and cardiovascular function in experimental emphysema. Respir Res. 2017;18(1):185. doi:10.1186/s12931-017-0668-9.
  • Khatib MN, Shankar A, Kirubakaran R, Agho K, Simkhada P, Gaidhane S, Saxena D, U B, Gode D, Gaidhane A, et al. Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: a systematic review and meta-analysis. Plos One. 2015;10(5):e0126697. doi:10.1371/journal.pone.0126697.
  • Li J, Teng X, Jin S, Dong J, Guo Q, Tian D, Wu Y. Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats. J Hypertens. 2019;37(8):1633–43. doi:10.1097/HJH.0000000000002101.
  • Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–35. doi:10.1161/CIRCRESAHA.116.309326.
  • Yilmaz MI, Romano M, Basarali MK, Elzagallaai A, Karaman M, Demir Z, Demir MF, Akcay F, Seyrek M, Haksever N, et al. The effect of corrected inflammation, oxidative stress and endothelial dysfunction on fmd levels in patients with selected chronic diseases: a quasi-experimental study. Sci Rep. 2020;10(1):9018. doi:10.1038/s41598-020-65528-6.
  • Salimnejad R, Soleimani Rad J, Mohammad Nejad D, Roshangar L. Effect of ghrelin on total antioxidant capacity, lipid peroxidation, sperm parameters and fertility in mice against oxidative damage caused by cyclophosphamide. Andrologia. 2018;50(2):e12883. doi:10.1111/and.12883.
  • Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol. 2020;79:106180. doi:10.1016/j.intimp.2019.106180.
  • Ishii N, Tsubouchi H, Miura A, Yanagi S, Ueno H, Shiomi K, Nakazato M. Ghrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. Eur J Pharmacol. 2018;819:35–42. doi:10.1016/j.ejphar.2017.11.024.
  • Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19(2):121–35. doi:10.1038/nrm.2017.95.
  • Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol. 2017;45:31–37. doi:10.1016/j.ceb.2017.01.005.
  • Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, Yao X, Wang N, Huang Y. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5′ adenosine monophosphate–activated protein Kinase–Peroxisome Proliferator–activated receptor δ pathway. Arterioscler Thromb Vasc Biol. 2014;34(4):830–36. doi:10.1161/ATVBAHA.113.301938.
  • Cheng CK, Shang W, Liu J, Cheang WS, Wang Y, Xiang L, Lau CW, Luo JY, Ng CF, Huang Y, et al. Activation of AMPK/miR-181b axis alleviates endothelial dysfunction and vascular inflammation in diabetic mice. Antioxid (Basel). 2022;11(6):11. doi:10.3390/antiox11061137.
  • Yu Y, Xu LS, Wu Y, Su FF, Zhou XM, Xu C. The antihypertensive effect of MK on spontaneously hypertensive rats through the AMPK/Akt/eNOS/NO and ERK1/2/Cx43 signaling pathways. Hypertens Res. 2021;44(7):781–90. doi:10.1038/s41440-021-00638-w.
  • Xu M, Liu L, Song C, Chen W, Gui S. Ghrelin improves vascular autophagy in rats with vascular calcification. Life Sci. 2017;179:23–29. doi:10.1016/j.lfs.2016.11.025.