1,920
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Anthocyanin attenuates high salt-induced hypertension via inhibiting the hyperactivity of the sympathetic nervous system

, , , , , & show all
Article: 2233717 | Received 07 May 2023, Accepted 02 Jul 2023, Published online: 16 Jul 2023

References

  • Vaziri ND, Rodriguez-Iturbe B. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol. 2006;2(10):582–8. doi:10.1038/ncpneph0283.
  • Messerli FH, Hofstetter L, Syrogiannouli L, Rexhaj E, Siontis GCM, Seiler C, Bangalore S. Sodium intake, life expectancy, and all-cause mortality. Eur Heart J. 2021;42:2103–12. doi:10.1093/eurheartj/ehaa947.
  • Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol. 2017;956:61–84. doi:10.1007/5584_2016_147.
  • Shimosawa T. Salt, the renin–angiotensin–aldosterone system and resistant hypertension. Hypertens Res. 2013;36(8):657–60. doi:10.1038/hr.2013.69.
  • Banday AA, Lokhandwala MF. RenaL dopamine oxidation and inflammation in high salt fed rats. J Am Heart Assoc. 2020;9(1):e014977. doi:10.1161/JAHA.119.014977.
  • Jensen BL, Mann B, Skott O, Kurtz A. Differential regulation of renal prostaglandin receptor mRnas by dietary salt intake in the rat. Kidney Int. 1999;56:528–37. doi:10.1046/j.1523-1755.1999.00564.x.
  • Tian N, Moore RS, Braddy S, Rose RA, Gu JW, Hughson MD, Manning RD Jr. Interactions between oxidative stress and inflammation in salt-sensitive hypertension. Am J Physiol Heart Circ Physiol. 2007;293(6):H3388–H95. doi:10.1152/ajpheart.00981.2007.
  • Zheng T, Wu Y, Peng MJ, Xiao NQ, Tan ZJ, Yang T. Hypertension of liver-yang hyperactivity syndrome induced by a high salt diet by altering components of the gut microbiota associated with the glutamate/GABA-glutamine cycle. Front Nutr. 2022;9:964273. doi:10.3389/fnut.2022.964273.
  • Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol. 2005;32(5–6):419–25. doi:10.1111/j.1440-1681.2005.04205.x.
  • Niu LG, Sun N, Liu KL, Su Q, Qi J, Fu LY, Xin GR, Kang YM. Genistein alleviates oxidative stress and inflammation in the hypothalamic paraventricular nucleus by activating the Sirt1/Nrf2 pathway in high salt-induced hypertension. Cardiovasc Toxicol. 2022;22(10–11):898–909. doi:10.1007/s12012-022-09765-3.
  • Rapisarda P, Amenta M, Ballistreri G, Fabroni S, Timpanaro N. Distribution, antioxidant capacity, bioavailability and biological properties of anthocyanin pigments in blood oranges and other citrus species. Molecules. 2022;27(24):27. doi:10.3390/molecules27248675.
  • Cui HX, Chen JH, Li JW, Cheng FR, Yuan K. Protection of anthocyanin from Myrica rubra against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-κB and NLRP3 pathways. Molecules. 2018 23;23(7):1788. doi:10.3390/molecules23071788.
  • Lopez-Fernandez-Sobrino R, Soliz-Rueda JR, Avila-Roman J, Arola-Arnal A, Suarez M, Muguerza B, Bravo FI. Blood pressure-lowering effect of wine lees phenolic compounds is mediated by endothelial-derived factors: role of sirtuin 1. Antioxid (Basel). 2021;10(7):1073. doi:10.3390/antiox10071073.
  • Wu T, Zheng Y, Huang Q, Tian S. Paeonol improves renal and vascular angiotensin II type 1 receptor function via inhibiting oxidative stress in spontaneously hypertensive rats. Clin Exp Hypertens. 2023;45:2182884. doi:10.1080/10641963.2023.2182884.
  • Chen K, Sun D, Qu S, Chen Y, Wang J, Zhou L, Jose PA, Yang Y, Zeng C. Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system. Clin Sci (Lond). 2019;133:1097–113. doi:10.1042/CS20190254.
  • DiBona GF. Central angiotensin modulation of baroreflex control of renal sympathetic nerve activity in the rat: influence of dietary sodium. Acta Physiol Scand. 2003;177:285–89. doi:10.1046/j.1365-201X.2003.01074.x.
  • Mowry FE, Peaden SC, Stern JE, Biancardi VC. TLR4 and AT1R mediate blood-brain barrier disruption, neuroinflammation, and autonomic dysfunction in spontaneously hypertensive rats. Pharmacol Res. 2021;174:105877. doi:10.1016/j.phrs.2021.105877.
  • Li HB, Qin DN, Ma L, Miao YW, Zhang DM, Lu Y, Song XA, Zhu GQ, Kang YM. Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicol Appl Pharmacol. 2014;279(2):141–49. doi:10.1016/j.taap.2014.06.004.
  • Ertuglu LA, Mutchler AP, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; the role of the NLRP3 inflammasome. Front Physiol. 2022;13:1096296. doi:10.3389/fphys.2022.1096296.
  • Zhu J, Xu Y, Ren G, Hu X, Wang C, Yang Z, Li Z, Mao W, Lu D. Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur J Pharmacol. 2017;815:427–36. doi:10.1016/j.ejphar.2017.09.047.
  • Mutchler SM, Kirabo A, Kleyman TR. Epithelial sodium channel and salt-sensitive hypertension. Hypertension. 2021;77(3):759–67. doi:10.1161/HYPERTENSIONAHA.120.14481.
  • Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol. 2014;25:1148–55. doi:10.1681/ASN.2013121258.
  • Bragulat E, de la Sierra A. Salt intake, endothelial dysfunction, and salt-sensitive hypertension. J Clin Hypertens. 2002;4(1):41–46. doi:10.1111/j.1524-6175.2002.00503.x.
  • Bkaily G, Simon Y, Jazzar A, Najibeddine H, Normand A, Jacques D. High Na(+) salt diet and remodeling of vascular smooth muscle and endothelial cells. Biomedicines. 2021;9(8):883. doi:10.3390/biomedicines9080883.
  • Hay M. Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. Clin Sci (Lond). 2016;130:9–18. doi:10.1042/CS20150654.
  • Nakata T, Takeda K, Itho H, Hirata M, Kawasaki S, Hayashi J, Oguro M, Sasaki S, Nakagawa M. Paraventricular nucleus lesions attenuate the development of hypertension in DOCA/salt-treated rats. Am J Hypertens. 1989;2:625–30. doi:10.1093/ajh/2.8.625.
  • Zhang DD, Liang YF, Qi J, Kang KB, Yu XJ, Gao HL, Liu KL, Chen YM, Shi XL, Xin GR, et al. Carbon monoxide attenuates high salt-induced hypertension while reducing pro-inflammatory cytokines and oxidative stress in the paraventricular nucleus. Cardiovasc Toxicol. 2019;19(5):451–64. doi:10.1007/s12012-019-09517-w.
  • Zhang CL, Lin YZ, Wu Q, Yan C, Wong MW, Zeng F, Zhu P, Bowes K, Lee K, Zhang X, et al. Arcuate NPY is involved in salt-induced hypertension via modulation of paraventricular vasopressin and brain-derived neurotrophic factor. J Cell Physiol. 2022;237(5):2574–88. doi:10.1002/jcp.30719.
  • Su Q, Yu XJ, Wang XM, Peng B, Bai J, Li HB, Li Y, Xia WJ, Fu LY, Liu KL, et al. Na(+)/k(+)-ATPase Alpha 2 isoform elicits Rac1-dependent oxidative stress and TLR4-induced inflammation in the hypothalamic paraventricular nucleus in high salt-induced hypertension. Antioxid (Basel). 2022;11(2):11. doi:10.3390/antiox11020288.
  • Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases. J Inflamm Res. 2022;15:3083–94. doi:10.2147/JIR.S350109.
  • Morisawa N, Kitada K, Fujisawa Y, Nakano D, Yamazaki D, Kobuchi S, Li L, Zhang Y, Morikawa T, Konishi Y, et al. Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertens Res. 2020;43(6):482–91. doi:10.1038/s41440-019-0389-1.
  • Park JB, Jo JY, Zheng H, Patel KP, Stern JE. Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J Physiol. 2009;587:4645–60. doi:10.1113/jphysiol.2009.173435.
  • Xu ML, Yu XJ, Zhao JQ, Du Y, Xia WJ, Su Q, Du MM, Yang Q, Qi J, Li Y, et al. Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicol Appl Pharmacol. 2020;394:114950.
  • Qi J, Yu XJ, Shi XL, Gao HL, Yi QY, Tan H, Fan XY, Zhang Y, Song XA, Cui W, et al. NF-κB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and caspase-1. Cardiovasc Toxicol. 2016;16(4):345–54. doi:10.1007/s12012-015-9344-9.
  • Wang Y, Yin J, Wang C, Hu H, Li X, Xue M, Liu J, Cheng W, Wang Y, Li Y, et al. Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat. J Cell Mol Med. 2019;23(1):112–25. doi:10.1111/jcmm.13890.
  • Zhou L, Wang H, Yi J, Yang B, Li M, He D, Yang W, Zhang Y, Ni H. Anti-tumor properties of anthocyanins from Lonicera caerulea ‘Beilei’ fruit on human hepatocellular carcinoma: In vitro and in vivo study. Biomed Pharmacother. 2018;104:520–29. doi:10.1016/j.biopha.2018.05.057.
  • Cassidy A. Berry anthocyanin intake and cardiovascular health. Mol Aspects Med. 2018;61:76–82. doi:10.1016/j.mam.2017.05.002.
  • Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr. 2021;61:3740–55. doi:10.1080/10408398.2020.1805407.
  • Xu JW, Ikeda K, Yamori Y. Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension. 2004;44(2):217–22. doi:10.1161/01.HYP.0000135868.38343.c6.
  • Hobara N, Gessei-Tsutsumi N, Goda M, Takayama F, Akiyama S, Kurosaki Y, Kawasaki H. Long-term inhibition of angiotensin prevents reduction of periarterial innervation of calcitonin gene-related peptide (CGRP)-containing nerves in spontaneously hypertensive rats. Hypertens Res. 2005;28(5):465–74. doi:10.1291/hypres.28.465.
  • Bell DR, Gochenaur K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol (1985). 2006;100(4):1164–70. doi:10.1152/japplphysiol.00626.2005.
  • Parichatikanond W, Pinthong D, Mangmool S. Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med. 2012;78(15):1626–32. doi:10.1055/s-0032-1315198.