1,668
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Canagliflozin ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting pulmonary arterial smooth muscle cell proliferation

, , , , , & show all
Article: 2278205 | Received 07 Aug 2023, Accepted 26 Oct 2023, Published online: 16 Nov 2023

References

  • Wang Y, Duo D, Yan Y, He R, Wu X. Magnesium lithospermate B ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and its potential targets. Biomed Pharmacother. 2020;130:110560. doi:10.1016/j.biopha.2020.110560. Cited in: PMID: 34321157.
  • Southgate L, Machado RD, Graf S, Morrell NW. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol. 2020;17(2):85–9. doi:10.1038/s41569-019-0242-x. Cited in: PMID: 31406341.
  • Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA. 2022;327(14):1379–91. doi:10.1001/jama.2022.4402. Cited in: PMID: 35412560.
  • Sitbon O, Gomberg-Maitland M, Granton J, Lewis MI, Mathai SC, Rainisio M, Stockbridge NL, Wilkins MR, Zamanian RT, Rubin LJ. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur Respir J. 2019;53(1):1801908. doi:10.1183/13993003.01908-2018. Cited in: PMID: 30545975.
  • Wang HL, Tang FQ, Jiang YH, Zhu Y, Jian Z, Xiao YB. AMPKalpha2 deficiency exacerbates hypoxia-induced pulmonary hypertension by promoting pulmonary arterial smooth muscle cell proliferation. J Physiol Biochem. 2020;76(3):445–56. doi: 10.1007/s13105-020-00742-4. Cited in: PMID: 32592088.
  • Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492. doi:10.1136/bmj.j5492. Cited in: PMID: 29540357.
  • Veith C, Vartürk-Özcan I, Wujak M, Hadzic S, Wu CY, Knoepp F, Kraut S, Petrovic A, Gredic M, Pak O, et al. SPARC, a Novel Regulator of Vascular Cell Function in Pulmonary Hypertension. Circulation. 2022;145(12):916–33. doi:10.1161/CIRCULATIONAHA.121.057001. Cited in: PMID: 35175782.
  • Ruffenach G, Medzikovic L, Aryan L, Li M, Eghbali M. HNRNPA2B1: RNA-Binding protein that orchestrates smooth muscle cell phenotype in pulmonary arterial hypertension. Circulation. 2022;146(16):1243–58. doi:10.1161/CIRCULATIONAHA.122.059591. Cited in: PMID: 35993245.
  • Spertus JA, Birmingham MC, Nassif M, Damaraju CV, Abbate A, Butler J, Lanfear DE, Lingvay I, Kosiborod MN, Januzzi JL. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–13. doi:10.1038/s41591-022-01703-8. Cited in: PMID: 35228753.
  • Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136(17):1643–58. doi:10.1161/CIRCULATIONAHA.117.030012. Cited in: PMID: 29061576.
  • Behnammanesh G, Durante GL, Khanna YP, Peyton KJ, Durante W. Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: role of heme oxygenase-1. Redox Biol. 2020;32:101527. doi:10.1016/j.redox.2020.101527. Cited in: PMID: 32278282.
  • Durante W, Behnammanesh G, Peyton KJ. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int J Mol Sci. 2021;22(16):8786. doi: 10.3390/ijms22168786. Cited in: PMID: 34445519.
  • Dutzmann J, Bode LM, Kalies K, Korte L, Knöpp K, Kloss FJ, Sirisko M, Pilowski C, Koch S, Schenk H, et al. Empagliflozin prevents neointima formation by impairing smooth muscle cell proliferation and accelerating endothelial regeneration. Front Cardiovasc Med. 2022;9:956041. Cited in: PMID: 36017090. doi:10.3389/fcvm.2022.956041.
  • Sukhanov S, Higashi Y, Yoshida T, Mummidi S, Aroor AR, Jeffrey Russell J, Bender SB, DeMarco VG, Chandrasekar B. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1beta and IL-18 secretion. Cell Signal. 2021;77:109825. doi:10.1016/j.cellsig.2020.109825. Cited in: PMID: 33160017.
  • Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, Quan A, Sabongui S, Al-Omran M, Bhatt DL, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun. 2020;524(1):50–56. doi:10.1016/j.bbrc.2020.01.015. Cited in: PMID: 31980166.
  • Tang Y, Tan S, Li M, Tang Y, Xu X, Zhang Q, Fu Q, Tang M, He J, Zhang Y, et al. Dapagliflozin, sildenafil and their combination in monocrotaline-induced pulmonary arterial hypertension. BMC Pulm Med. 2022;22(1):142. doi:10.1186/s12890-022-01939-7. Cited in: PMID: 3541388.
  • Wu J, Liu T, Shi S, Fan Z, Hiram R, Xiong F, Cui B, Su X, Chang R, Zhang W, et al. Dapagliflozin reduces the vulnerability of rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling. Cardiovasc Diabetol. 2022;21(1):197. doi:10.1186/s12933-022-01614-5. Cited in: PMID: 36171554.
  • Dai J, Zhou Q, Chen J, Rexius-Hall ML, Rehman J, Zhou G. Alpha-enolase regulates the malignant phenotype of pulmonary artery smooth muscle cells via the AMPK-Akt pathway. Nat Commun. 2018;9(1):3850. doi:10.1038/s41467-018-06376-x. Cited in: PMID: 30242159.
  • Wang Y, Yang L, Mao L, Zhang L, Zhu Y, Xu Y, Cheng Y, Sun R, Zhang Y, Ke J, et al. SGLT2 inhibition restrains thyroid cancer growth via G1/S phase transition arrest and apoptosis mediated by DNA damage response signaling pathways. Cancer Cell Int. 2022;22(1):74. doi:10.1186/s12935-022-02496-z. Cited in: PMID: 35148777.
  • Sevilla-Pérez J, Königshoff M, Kwapiszewska G, Amarie OV, Seeger W, Weissmann N, Schermuly RT, Morty RE, Eickelberg O. Shroom expression is attenuated in pulmonary arterial hypertension. Eur Respir J. 2008;32(4):871–80. doi: 10.1183/09031936.00045507. Cited in: PMID: 18550613.
  • Savai R, Al-Tamari HM, Sedding D, Kojonazarov B, Muecke C, Teske R, Capecchi MR, Weissmann N, Grimminger F, Seeger W, et al. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med. 2014;20(11):1289–300. doi:10.1038/nm.3695. Cited in: PMID: 25344740.
  • Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017;548(7665):112–16. doi:10.1038/nature23275. Cited in: PMID: 28723898.
  • Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al. Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity. Circ Res. 2020;127(4):466–82. doi:10.1161/CIRCRESAHA.119.316463. Cited in: PMID: 32404031.
  • Omura J, Satoh K, Kikuchi N, Satoh T, Kurosawa R, Nogi M, Ohtsuki T, Al-Mamun ME, Siddique MAH, Yaoita N, et al. ADAMTS8 promotes the development of pulmonary arterial hypertension and right ventricular failure: a possible novel therapeutic target. Circ Res. 2019;125(10):884–906. doi:10.1161/CIRCRESAHA.119.315398. Cited in: PMID: 31556812.
  • Song Y, Wu Y, Su X, Zhu Y, Liu L, Pan Y, Zhu B, Yang L, Gao L, Li M. Activation of AMPK inhibits PDGF-induced pulmonary arterial smooth muscle cells proliferation and its potential mechanisms. Pharmacol Res. 2016;107:117–24. doi:10.1016/j.phrs.2016.03.010. Cited in: PMID: 26993101.