2,111
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research hotspots and trends regarding microRNAs in hypertension: a bibliometric analysis

&
Article: 2304017 | Received 12 Sep 2023, Accepted 03 Jan 2024, Published online: 17 Jan 2024

References

  • DeGuire J, Clarke J, Rouleau K, Roy J, Bushnik T. Blood pressure and hypertension. Health Rep. 2019 Feb 20;30(2):14–14. doi:10.25318/82-003-x201900200002. PMID: 30785635.
  • Levy E, Spahis S, Bigras JL, Delvin E, Borys JM. The epigenetic machinery in vascular dysfunction and hypertension. Curr Hypertens Rep. 2017;19(6):52. doi:10.1007/s11906-017-0745-y.
  • Deng Z, He Y, Yang X, Shi H, Shi A, Lu L, He L. MicroRNA-29: a crucial player in fibrotic disease. Mol Diagn Ther. 2017;21(3):285–94. doi:10.1007/s40291-016-0253-9.
  • Li J, Zhang Y, Wang Y, Liu X, Zhang H, Wang H. MiR-155 is essential for the development of preeclampsia and its inhibition improves the preeclampsia phenotype and placental vascularization in mice. J Hypertens. 2023;41(1):123–34. doi:10.1097/HJH.0000000000002745.
  • Zhou R, Wang J, Sun M. The role of miR-29 family in cardiac development and disease. J Cell And Mol Med. 2023;27(2):345–56. doi:10.1111/jcmm.16543.
  • Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J. 2021;38(2):125–38. doi:10.1111/hir.12295.
  • Kokol P, Završnik J, Vošner HB. Bibliographic-based identification of hot future research topics: an opportunity for hospital librarianship. J Hosp Librariansh. 2018;18(4):315–322. doi:10.1080/15323269.2018.1509193.
  • Chaw L, Chien LC, Wong J, Takahashi K, Koh D, Lin RT. Global trends and gaps in research related to latent tuberculosis infection. BMC Public Health. 2020;20(1):352. doi:10.1186/s12889-020-8419-0. Published 2020 Mar 18.
  • Devos P, Ménard J. Trends in worldwide research in hypertension over the period 1999-2018: a bibliometric study. Hypertension. 2020;76(5):1649–55. doi:10.1161/HYPERTENSIONAHA.120.15711.
  • Pertz M, Popkirov S, Schlegel U, Thoma P. Research on cognitive and sociocognitive functions in patients with brain tumours: a bibliometric analysis and visualization of the scientific landscape.Neurol Sci. Neurol Sci. 2020;41(6):1437–1449. doi:10.1007/s10072-020-04276-x.
  • Zhou R, Lin X, Liu D, Liu, D, Li, Z, Zeng, J, Lin, X, Liang, X. Research hotspots and trends analysis of TFEB: a bibliometric and Scientometric analysis. Front Mol Neurosci. 2022;15:854954. doi:10.3389/fnmol.2022.854954. Published 2022 Apr 21.
  • Gao Y, Shi S, Ma W, Chen J, Cai Y, Ge L, Li L, Wu J, Tian J. Bibliometric analysis of global research on PD-1 and PD-L1 in the field of cancer. Int Immunopharmacol. 2019;72:374–84. doi:10.1016/j.intimp.2019.03.045.
  • Gao Y, Wang Y, Zhai X, He Y, Chen R, Zhou J, Li M, Wang Q. Publication trends of research on diabetes mellitus and T cells (1997–2016): a 20-year bibliometric study. PloS ONE. 2017;12(9):e0184869. doi: 10.1371/journal.pone.0184869. Published 2017 Sep 19.
  • Liu X, Wu X, Tang J, Zhang L, Jia X. Trends and development in the antibiotic-resistance of Acinetobacter baumannii: a scientometric research study (1991-2019). Infect Drug Resist. 2020;13:3195–208. doi:10.2147/IDR.S264391. Published 2020 Sep 16.
  • Ostchega Y, Fryar CD, Nwankwo T, Nguyen DT. Hypertension prevalence among adults aged 18 and over: United States, 2017-2018. NCHS Data Brief. 2020;(364):1–8.
  • Matshazi DM, Weale CJ, Erasmus RT, Kengne AP, Davids SFG, Raghubeer S, Davison GM, Matsha TE. Circulating levels of MicroRNAs associated with hypertension: a cross-sectional study in male and female South African participants. Front Genet. 2021;12:710438. doi:10.3389/fgene.2021.710438.
  • Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRnas may serve as biomarkers for hypertensive emergency end-organ injuries and address underlying pathways in an animal model. Front Cardiovasc Med. 2021;7:626699. doi:10.3389/fcvm.2020.626699.
  • Wronska A. The role of microRNA in the development, diagnosis, and treatment of cardiovascular disease: recent developments. Jf Pharmacol Exp Ther. 2023;384(1):123–32. doi:10.1124/jpet.121.001152.
  • Xie L, Chen Z, Wang H, Zheng C, Jiang J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on web of science and VOSviewer. World Neurosurg. 2020;137:435–442.e4. doi:10.1016/j.wneu.2020.01.171.
  • Zhong D, Li Y, Huang Y, Hong X, Li J, Jin R. Molecular mechanisms of exercise on cancer: a bibliometrics study and visualization analysis via CiteSpace. Front Mol Biosci. 2022 Jan 13;8:797902. doi:10.3389/fmolb.2021.797902. Published 2022.
  • Gao M, Zhang H, Gao Z, Sun Y, Wang J, Wei F, Gao D. Global hotspots and prospects of perimenopausal depression: a bibliometric analysis via CiteSpace. Front Psychiatry. 2022 Sep 10; 13: 968629. doi:10.3389/fpsyt.2022.968629. PMID: 36164290; PMCID: PMC9508326.
  • Tao S, Yang D, Zhang L, Yu L, Wang Z, Li L, Zhang J, Yao R, Huang L, Shao M. Knowledge domain and emerging trends in diabetic cardiomyopathy: a scientometric review based on CiteSpace analysis. Front Cardiovasc Med. 2022;9:891428. doi:10.3389/fcvm.2022.891428. Published 2022 Aug 25.
  • Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014). Expert Opin Biol Ther. 2014 Sep;14(9):1295–317. doi:10.1517/14712598.2014.920813. Epub 2014 Jul 31. PMID: 25077605.
  • Roberts WC. Quantitative extent of atherosclerotic plaque in the major epicardial coronary arteries in patients with fatal coronary heart disease, in coronary endarterectomy specimens, in aorta-coronary saphenous venous conduits, and means to prevent the plaques: a review after studying the coronary arteries for 50 years. Am J Cardiol. 2018;121(11):1413–1435. doi:10.1016/j.amjcard.2018.02.017.
  • Weber T, Lang I, Zweiker R, Horn S, Wenzel RR, Watschinger B, Slany J, Eber B, Roithinger FX, Metzler B, et al. Hypertension and coronary artery disease: epidemiology, physiology, effects of treatment, and recommendations: a joint scientific statement from the Austrian society of cardiology and the Austrian society of hypertension. Wien Klin Wochenschr. 2016;128(13–14):467–479. doi:10.1007/s00508-016-0998-5.
  • Feigl EO, Neat GW, Huang AH. Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol. 1990;22(4):375–90. doi:10.1016/0022-2828(90)91474-L.
  • Duncker DJ, Koller A, Merkus D, Canty JM. Regulation of coronary blood flow in health and ischemic heart disease. Progress In Cardiovascular Diseases. 2015;57(5):409–22. doi:10.1016/j.pcad.2014.12.002.
  • Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86. doi:10.1152/physrev.00045.2006.
  • Yim J, Rabkin SW. A patient-specific approach to assessing blood pressure management in patients with hypertension and coronary artery disease. J Clin Hypertens. 2018;20(2):233–39. doi:10.1111/jch.13191.
  • Ye C, Tong Y, Wu N, Wan GW, Zheng F, Chen JY, Lei JZ, Zhou H, Chen AD, Wang JJ, et al. Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacol Sin. 2021 Nov;42(11):1798–807. doi:10.1038/s41401-020-00608-x. Epub 2021 Feb 15. PMID: 33589794; PMCID: PMC8563753.
  • Zhuge Y, Zhang J, Qian F, Wen Z, Niu C, Xu K, Ji H, Rong X, Chu M, Jia C. Role of smooth muscle cells in cardiovascular disease. Int J Biol Sci. 2020 Aug 21;16(14):2741–2751. doi:10.7150/ijbs.49871. PMID: 33110393; PMCID: PMC7586427.
  • Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev. 2017 Oct 1;97(4):1555–1617. doi:10.1152/physrev.00003.2017. PMID: 28954852.
  • Lacolley P, Regnault V, Avolio AP. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res. 2018 Mar 15;114(4):513–528. doi:10.1093/cvr/cvy009. PMID: 29514201.
  • Cheng Y, Liu X, Yang J, Lin Y, Xu D-Z, Lu Q, Deitch EA, Huo Y, Delphin ES, Zhang C, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105(2):158–166. doi:10.1161/CIRCRESAHA.109.197517.
  • Sun SG, Zheng B, Han M, Fang X-M, Li H-X, Miao S-B, Su M, Han Y, Shi H-J, Wen J-K, et al. miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep. 2011;12(1):56–62. doi:10.1038/embor.2010.172.
  • Ye C, Tong Y, Wu N, Wan G-W, Zheng F, Chen J-Y, Lei J-Z, Zhou H, Chen A-D, Wang J-J, et al. Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacol Sin. 2021;42(11):1798–807. doi:10.1038/s41401-020-00608-x.
  • Turoni CJ, Marañón RO, Proto V, Herrera R, de Bruno MP. Nitric oxide modulates reactivity to angiotensin II in internal mammary arterial grafts in hypertensive patients without associated risk factors. Clin Exp Hypertens. 2011;33(1):27–33. doi:10.3109/10641963.2010.503297.
  • Li Y, Li H, Xing W, Li J, Du R, Cao D, Wang Y, Yang X, Zhong G, Zhao Y, et al. Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7. FASEB J. 2021;35(11):e21947. doi:10.1096/fj.202100766RR.
  • Xu MM, Deng HY, Li HH. MicroRNA-27a regulates angiotensin II-induced vascular smooth muscle cell proliferation and migration by targeting α-smooth muscle-actin in vitro. Biochem Biophys Res Commun. 2019;509(4):973–77. doi:10.1016/j.bbrc.2019.01.047.
  • Gu Q, Zhao G, Wang Y, Xu B, Yue J. Silencing miR-16 expression promotes angiotensin II stimulated vascular smooth muscle cell growth. Cell Dev Biol. 2017;6(1):181. doi:10.4172/2168-9296.1000181.
  • Wu WH, Hu CP, Chen XP, Zhang W-F, Li X-W, Xiong X-M, Li Y-J. MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension. Am J Hypertens. 2011;24(10):1087–93. doi:10.1038/ajh.2011.116.
  • Hammond SM. An overview of microRnas. Adv Drug Deliv Rev. 2015 Jun 29;87:3–14. doi:10.1016/j.addr.2015.05.001. Epub 2015 May 12. PMID: 25979468; PMCID: PMC4504744.
  • Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. doi:10.1373/clinchem.2010.147405.
  • HHo PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. IJMS. 2022 Jun 28;23(13):7167. doi:10.3390/ijms23137167. PMID: 35806173; PMCID: PMC9266664.
  • Li WY, Jin J, Chen J, Guo Y, Tang J, Tan S. Circulating microRnas as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens. 2014;28(5):288–291. doi:10.1038/jhh.2013.94.
  • Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Bond Lau W, Rong R, Yu X, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124(2):175–184. doi:10.1161/CIRCULATIONAHA.110.012237.
  • Yang Q, Wang P, Cai Y, Cui Y, Cui J, Du X, Chen Y, Zhang T. Circulating MicroRNA-505 may serve as a prognostic biomarker for hypertension-associated endothelial dysfunction and inflammation. Front Cardiovasc Med. 2022;9:834121. doi:10.3389/fcvm.2022.834121. Published 2022 Apr 29.
  • Tomek J, Bub G. Hypertension-induced remodelling: on the interactions of cardiac risk factors. J Physiol. 2017;595(12):4027–36. doi:10.1113/JP273043.
  • Takimoto-Ohnishi E, Murakami K. Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci. 2019;69(4):581–87. doi:10.1007/s12576-019-00679-4.
  • Varagic J, Frohlich ED. Local cardiac renin-angiotensin system: hypertension and cardiac failure. J Mol Cell Cardiol. 2002;34(11):1435–42. doi:10.1006/jmcc.2002.2075.
  • Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019;316(5):H958–70. doi:10.1152/ajpheart.00723.2018.
  • Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98(1):505–53. doi:10.1152/physrev.00023.2016.
  • DAHL LK. Effects of chronic excess salt feeding. Induction of self-sustaining hypertension in rats. J Exp Med. 1961;114(2):231–236. doi:10.1084/jem.114.2.231.
  • Kawasaki T, Delea CS, Bartter FC, Smith H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med. 1978;64(2):193–198. doi:10.1016/0002-9343(78)90045-1.
  • Luft FC, Rankin LI, Bloch R, Weyman AE, Willis LR, Murray RH, Grim CE, Weinberger MH. Cardiovascular and humoral responses to extremes of sodium intake in normal black and white men. Circulation. 1979;60(3):697–706. doi:10.1161/01.cir.60.3.697.
  • Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol. 2022 Sep 13; 13: 1001434. doi:10.3389/fphys.2022.1001434. PMID: 36176775; PMCID: PMC9513236.
  • Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming. Hypertension. 2006 Mar;47(3):502–8. doi:10.1161/01.HYP.0000198544.09909.1a. Epub 2006 Jan 16. PMID: 16415374.
  • Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr. 2001 Apr;4(2B):611–24. doi:10.1079/phn2001145. PMID: 11683554.
  • Hsu CN, Tain YL. The double-edged sword effects of maternal nutrition in the developmental programming of hypertension. Nutrients. 2018 Dec 4;10(12):1917. doi:10.3390/nu10121917. PMID: 30518129; PMCID: PMC6316180.
  • Hanson M. The birth and future health of DOHaD. J Dev Orig Health Dis. 2015;6(5):434–37. doi:10.1017/S2040174415001129.
  • Tain YL, Joles JA. Reprogramming: a preventive strategy in hypertension focusing on the kidney. Int J Mol Sci. 2015 Dec 25;17(1):23. doi:10.3390/ijms17010023. PMID: 26712746; PMCID: PMC4730270.
  • Paauw ND, van Rijn BB, AT L, Joles JA. Pregnancy as a critical window for blood pressure regulation in mother and child: programming and reprogramming. Acta Physiol (Oxf). 2017 Jan;219(1):241–59. doi:10.1111/apha.12702. Epub 2016 May 26. PMID: 27124608.
  • Tagi VM, Mainieri F, Chiarelli F. Hypertension in patients with insulin resistance: etiopathogenesis and management in children. Int J Mol Sci. 2022;23(10):5814. doi:10.3390/ijms23105814. Published 2022 May 22.
  • Xing W, Yan W, Liu P, Ji L, Li Y, Sun L, Tao L, Zhang H, Gao F. A novel mechanism for vascular insulin resistance in normotensive young SHRs: hypoadiponectinemia and resultant APPL1 downregulation. Hypertension. 2013;61(5):1028–35. doi:10.1161/HYPERTENSIONAHA.111.00728.
  • Zhang H, Li J, Li R, Zhang Q, Ma H, Ji Q, Guo W, Wang H, Lopez BL, Christopher TA, et al. Reduced cardiotropic response to insulin in spontaneously hypertensive rats: role of peroxisome proliferator-activated receptor-γ-initiated signaling. J Hypertens. 2008;26(3):560–69. doi:10.1097/HJH.0b013e3282f343e1.
  • Vukmirovic OG, Tilghman SM. Exploring genome space. Nature. 2000;405(6788):820–22. doi:10.1038/35015690.
  • Cappola TP, Margulies KB. Functional genomics applied to cardiovascular medicine. Circulation. 2011 Jul 5;124(1):87–94. doi:10.1161/CIRCULATIONAHA.111.027300. PMID: 21730321; PMCID: PMC3138215.
  • Chen MM, Ashley EA, Deng DX, Tsalenko A, Deng A, Tabibiazar R, Ben-Dor A, Fenster B, Yang E, King JY, et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation. 2003;108(12):1432–39. doi:10.1161/01.CIR.0000091235.94914.75.
  • Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, Adamson J, Johnston NR, Denvir MA, Megson IL, Flapan AD, et al. Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation. 2010;121(16):1818–1827. doi:10.1161/CIRCULATIONAHA.109.911339.
  • Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40(10):2023–39. doi:10.1016/j.biocel.2008.02.020.
  • Chung E, Leinwand LA. Pregnancy as a cardiac stress model. Cardiovasc Res. 2014;101(4):561–570. doi:10.1093/cvr/cvu013.
  • Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98(1):5–10. doi:10.1136/heartjnl-2011-300639.
  • Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407. doi:10.1038/s41569-018-0007-y.
  • Kannel WB, Dannenberg AL, Levy D. Population implications of electrocardiographic left ventricular hypertrophy. Am J Cardiol. 1987;60(17):85I–93I. doi:10.1016/0002-9149(87)90466-8.
  • Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004;109(13):1580–1589. doi:10.1161/01.CIR.0000120390.68287.BB.
  • Mehra MR, Uber PA, Francis GS. Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol. 2003;41(9):1606–1610. doi:10.1016/s0735-1097(03)00245-6.
  • Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 2001;274(1–2):157–67. doi:10.1016/s0378-1119(01)00612-6.
  • Sera SR, zur Nieden NI. Zur Nieden NI. microRNA Regulation of Skeletal Development. Curr Osteoporos Rep. 2017;15(4):353–366. doi:10.1007/s11914-017-0379-7.
  • Calame K. MicroRNA-155 function in B cells. Immunity. 2007;27(6):825–27. doi:10.1016/j.immuni.2007.11.010.
  • Due H, Svendsen P, Bødker JS, Schmitz A, Bøgsted M, Johnsen HE, El-Galaly TC, Roug AS, Dybkær K. miR-155 as a biomarker in B-Cell malignancies. Biomed Res Int. 2016;2016:1–14. doi:10.1155/2016/9513037.
  • Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: two key modulators of immune response and tumor development. Noncoding RNA. 2017;3(3):22. doi:10.3390/ncrna3030022. Published 2017 Jun 26.
  • Zhou H, Li J, Gao P, Wang Q, Zhang J. miR-155: a novel target in allergic asthma. Int J Mol Sci. 2016;17(10):1773. doi: 10.3390/ijms17101773. Published 2016 Oct 24.
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin‐Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracellular Vesicle. 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750. Published 2018 Nov 23.
  • Simeone P, Bologna G, Lanuti P, Pierdomenico L, Guagnano MT, Pieragostino D, Del Boccio P, Vergara D, Marchisio M, Miscia S, et al. Extracellular vesicles as signaling mediators and disease biomarkers across biological barriers. Int J Mol Sci. 2020;21(7):2514. doi:10.3390/ijms21072514. Published 2020 Apr 4.
  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–228. doi:10.1038/nrm.2017.125.
  • Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR. Extracellular vesicles in neurodegenerative disease — pathogenesis to biomarkers. Nat Rev Neurol. 2016;12(6):346–57. doi:10.1038/nrneurol.2016.68.
  • Lapitz A, Arbelaiz A, Olaizola P, Aranburu A, Bujanda L, Perugorria MJ, Banales JM. Extracellular Vesicles in Hepatobiliary Malignancies. Front Immunol. 2018;9:2270. doi:10.3389/fimmu.2018.02270. Published 2018 Oct 12.
  • de Couto G, Gallet R, Cambier L, Jaghatspanyan E, Makkar N, Dawkins JF, Berman BP, Marbán E. Exosomal MicroRNA Transfer Into Macrophages Mediates Cellular Postconditioning. Circulation. 2017;136(2):200–14. doi:10.1161/CIRCULATIONAHA.116.024590.
  • Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation [published correction appears in genome res 1999 Feb;9(2): 210. Genome Res. 1998;8(12):1229–31. doi:10.1101/gr.8.12.1229.
  • Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2018 Jan 15; 640: 66–72. doi:10.1016/j.gene.2017.10.021. Epub 2017 Oct 13. PMID: 29032146.
  • Luo J, Cai Q, Wang W, Huang H, Zeng H, He W, Deng W, Yu H, Chan E, NG C-F, et al. A microRNA-7 binding site polymorphism in HOXB5 leads to differential gene expression in bladder cancer. PloS ONE. 2012;7(6):e40127. doi:10.1371/journal.pone.0040127.
  • Li Y, Shi X, Cai X, Zhu Y, Chen Y, Lai J. microRNA-422a inhibits DCC expression in a manner dependent on SNP rs12607853. Cytogenet Genome Res. 2020;160(2):63–71. doi:10.1159/000506031.
  • Knox B, Wang Y, Rogers LJ, Xuan J, Yu D, Guan H, Chen J, Shi T, Ning B, Kadlubar SA, et al. A functional SNP in the 3′-UTR of TAP2 gene interacts with microRNA hsa-miR-1270 to suppress the gene expression. Environ Mol Mutagen. 2018;59(2):134–43. doi:10.1002/em.22159.