Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
1,020
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ecofriendly bio-synthesis and spectral characterization of copper nanoparticles using fruit extract of Pedalium murex L.: in vitro evaluation of antimicrobial, antioxidant and anticancer activities on human lung cancer A549 cell line

, , , , , , , ORCID Icon & ORCID Icon show all
Article: 2286818 | Received 03 Sep 2023, Accepted 19 Nov 2023, Published online: 12 Dec 2023

References

  • Thiruvengadam S, Kumar BSM, Yamini C. Applications of Nanotechnology in the world of biology -A Scientific Review. Int Jou Sci Rese Rev. 2019;8:106–16.
  • Majeed S, Aripin FHB, Shoeb NSB, et al. Bioengineered silver nanoparticles capped with bovine serum albumin and its anticancer and apoptotic activity against breast, bone and intestinal colon cancer cell lines. Mater Sci Eng C. 2019;102:254–263. doi: 10.1016/j.msec.2019.04.041
  • Khan F, Shariq M, Asif M, et al. Green nanotechnology: Plant-Mediated nanoparticle synthesis and application. [Internet]. Nanomaterials. [cited 2023 Aug 7]. 2022;12:673. 4. doi: 10.3390/nano12040673
  • Chota A, George BP, Abrahamse H. Recent advances in green metallic nanoparticles for enhanced drug delivery in photodynamic therapy: a therapeutic approach. Int J Mol Sci. 2023;24(5):4808. doi: 10.3390/ijms24054808
  • Mittal AK, Tripathy D, Choudhary A, et al. Bio-synthesis of silver nanoparticles using Potentilla fulgens wall. ex hook. And its therapeutic evaluation as anticancer and antimicrobial agent. Mater Sci Eng C Mater Biol Appl. 2015;53:120–127. doi: 10.1016/j.msec.2015.04.038
  • Agnihotri SK, Prashant DV, Samajdar DP. Role of metallic nanoparticles in the optoelectronic performance enhancement of InP ultrathin film solar cell. Opt Mater. 2022;134:113129. doi: 10.1016/j.optmat.2022.113129
  • Chung I-M, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 2016;11(1):40. doi: 10.1186/s11671-016-1257-4
  • Shetti NP, Bukkitgar SD, Reddy KR, et al. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens Bioelectron. 2019;141:111417. doi: 10.1016/j.bios.2019.111417
  • Sápi A, Rajkumar T, Kiss J, et al. Metallic nanoparticles in heterogeneous catalysis. Catal Lett. 2021;151(8):2153–2175. doi: 10.1007/s10562-020-03477-5
  • Mohammed SSS, Lawrance AV, Sampath S, et al. Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: spectral characterisation and its potential biological applications. Mater Technol. 2022;37(8):533–546. doi: 10.1080/10667857.2020.1863571
  • Mafuné F, Jun-ya K, Kondow TT, et al. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B. 2023;104:8333–8337. [Internet]. [cited 2023 Aug 7] [Internet]: https://pubs.acs.org/doi/10.1021/jp001803b
  • Tabrizi NS, Xu Q, van der Pers NM, et al. Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res. 2009;11(5):1209–1218. doi: 10.1007/s11051-008-9568-8
  • Pingali KC, A Rockstraw D, Deng S. Silver nanoparticles from Ultrasonic Spray Pyrolysis of aqueous silver Nitrate. Aero Sci and Techn. 2023;10:101–1014. [Internet]. [cited 2023 Aug 7]. [Internet]: https://www.tandfonline.com/doi/full/10.1080/02786820500380255
  • Thuc DT, Huy TQ, Hoang LH, et al. Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Mater Lett. 2016;181:173–177. doi: 10.1016/j.matlet.2016.06.008
  • Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, et al. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res. 2019;23(1):27. doi: 10.1186/s40824-019-0173-y
  • Chen P, Song L, Liu Y, et al. Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat Phys Chem. 2007;76(7):1165–1168. doi: 10.1016/j.radphyschem.2006.11.012
  • Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci. 2020;284:102246. doi: 10.1016/j.cis.2020.102246
  • Kannan BN, Thoppil J. Plant-mediated synthesis of silver nanoparticles by two species of cynanchum L. (Apocynaceae): a comparative approach on its physical characteristics. Int J Nano Dimens. 2018;9:104–111.
  • Bar H, DKr B, Sahoo GP, et al. Green synthesis of silver nanoparticles using latex of jatropha curcas. Colloids Surf A Physicochem Eng Asp. 2009;339(1–3):134–139. doi: 10.1016/j.colsurfa.2009.02.008
  • Ahmed S, Saifullah, Ahmad M, et al. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016;9(1):1–7. doi: 10.1016/j.jrras.2015.06.006
  • Kuppusamy P, Yusoff MM, Maniam GP, et al. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J. 2016;24(4):473–484. doi: 10.1016/j.jsps.2014.11.013
  • Green biosynthesis of nanoparticles: mechanisms and applications [Internet]. CABI Books. [cited 2023 Aug 7]. Available from: https://www.cabidigitallibrary.org/doi/abs/10.1079/9781780642239.0000
  • Ridge CA, McErlean AM, Ginsberg MS. Epidemiology of lung cancer. Semin Intervent Radiol. 2013;30(2):093–098. doi: 10.1055/s-0033-1342949
  • Greenwell M, Rahman PKSM. Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res. 2015;6:4103–4112.
  • Wang J, Jiang Y-F. Natural compounds as anticancer agents: experimental evidence. World J Exp Med. 2012;2(3):45–57. doi: 10.5493/wjem.v2.i3.45
  • Yu M, Gouvinhas I, Rocha J, et al. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep. 2021;11(1):10041. doi: 10.1038/s41598-021-89437-4
  • Tinajero-Díaz E, Salado-Leza D, Gonzalez C, et al. Green metallic nanoparticles for cancer therapy: evaluation models and cancer applications. Pharmaceutics. 2021;13(10):1719. doi: 10.3390/pharmaceutics13101719
  • Gul R, Saddique M, Khan MA, et al. Eco-friendly synthesis of silver nanoparticles and its biological evaluation using Tamarix aphylla leaves extract. Mater Technol. 2022;37(9):962–969. doi: 10.1080/10667857.2021.1908770
  • Dehelean CA, Marcovici I, Soica C. Molecules | free full-text | plant-derived anticancer compounds as New perspectives in drug discovery and alternative therapy. [Internet]. Molecules. [cited 2023 Aug 7];26(4):1109. Available from: https://www.mdpi.com/1420-3049/26/4/1109
  • Rojas B, Soto N, Villalba M, et al. Antibacterial Activity of Copper Nanoparticles (CuNPs) against a Resistant Calcium Hydroxide Multispecies Endodontic Biofilm. Nanomaterials (Basel). 2021;11(9):2254. doi: 10.3390/nano11092254
  • Gnanavel V, Palanichamy V, Roopan SM. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J Photochem Photobiol B. 2017;171:133–138. doi: 10.1016/j.jphotobiol.2017.05.001
  • Biogenic copper oxide nanoparticles from bacillus coagulans induced reactive oxygen species generation and apoptotic and anti-metastatic activities in breast cancer cells - PMC. [Internet]. [cited 2023 Aug 7]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958044/
  • Chakraborty N, Banerjee J, Chakraborty P, et al. Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev. 2022;15(1):187–215. doi: 10.1080/17518253.2022.2025916
  • Yang L, Wang W-X. Comparative contributions of copper nanoparticles and ions to copper bioaccumulation and toxicity in barnacle larvae. Environ Pollut. 2019;249:116–124. doi: 10.1016/j.envpol.2019.02.103
  • Ghasemi P, Shafiee G, Ziamajidi N, et al. Copper nanoparticles induce apoptosis and oxidative stress in SW-480 human colon cancer cell line [Internet]. Review. 2022. [cited 2023 Aug 7]. Available from: https://www.researchsquare.com/article/rs-1885906/v1
  • AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290. doi: 10.1021/nn800596w
  • Hua J, Vijver M, Ahmad F, et al. Toxicity of different sized copper nano- and sub-micron particles and their shed copper ions to zebrafish embryos. Environ Toxicol Chem. 2014;33(8):1774–1782. doi: 10.1002/etc.2615
  • Malhotra N, Ger T-R, Uapipatanakul B, et al. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials (Basel). 2020;10(6):1126. doi: 10.3390/nano10061126
  • Govindarajan M, Rajeswary M, Veerakumar K, et al. Green synthesis and characterization of silver nanoparticles fabricated using anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp Parasitol. 2016;161:40–47. doi: 10.1016/j.exppara.2015.12.011
  • Chauhan N, K Tyagi A, Kumar P, et al. Antibacterial potential of jatropha curcas synthesized silver nanoparticles against food Borne Pathogens Front Microbiol. 2023;7:1748. [Internet]. [cited 2023 Aug 11]. [Internet]: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099242/
  • Motakef-Kazemi N, Yaqoubi M. Green synthesis and characterization of Bismuth oxide nanoparticle using Mentha pulegium extract. [Internet]. Iran J Pharm Res. 2023;19:70–79. [cited 2023 Aug 11]. [Internet]: https://brieflands.com/articles/ijpr-124421.html
  • Paramasivam G, Karnan P, Subbiah S, et al. Green synthesis of copper nanoparticles obtained from Pedalium murex. L (Yanai Nerunjil) and their antimicrobial activity. Inter Jo of Rese Advet Techn. 2019;7:301–310.
  • (PDF) phytochemical and pharmacological studies in Pedalium murex L [Internet]. [cited 2023 Aug 11]. Available from: https://www.researchgate.net/publication/314654428_Phytochemical_and_pharmacological_studies_in_Pedalium_murex_L
  • Devanesan AA, Zipora T, Smilin BA G, et al. Phytochemical and pharmacological status of indigenous medicinal plant Pedalium murex L.—A review. Biomed Pharmacother. 2018;103:1456–1463. doi: 10.1016/j.biopha.2018.04.177
  • Sermakkani M, Thangapandian V. PHYTOCHEMICAL SCREENING FOR ACTIVE COMPOUNDS IN PEDALIUM MUREX L. Rece Rese Scie and Techn. 2010;2:110–114.
  • Bharskar GR. Review on phytochemistry and pharmacological aspects of Pedalium murex Linn. Asia Journ Of Resear In Pharmac Scie. 2020;10(3):183–188. doi: 10.5958/2231-5659.2020.00035.1
  • Balan L, Chandrasekaran S, Gajendiran M, et al. Synthesis of silver nanoparticles from Pedalium murex L. and its antiproliferative activity against breast cancer (MCF-7) cells. J Mol Struct. 2021;1242:130695. doi: 10.1016/j.molstruc.2021.130695
  • (PDF) antioxidant activities of the aqueous extracts of Pedalium murex D. Royen EX L. Fruit and leafy stem [Internet]. [cited 2023 Aug 11]. Available from: https://www.researchgate.net/publication/354237956_Antioxidant_Activities_of_the_Aqueous_Extracts_of_Pedalium_murex_D_Royen_EX_L_Fruit_and_Leafy_Stem
  • (PDF) silver nanoparticles: synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. [cited 2023 Aug 14]. InternetAvailable from: https://www.researchgate.net/publication/309584094_Silver_nanoparticles_Synthesis_mechanism_of_antimicrobial_action_characterization_medical_applications_and_toxicity_effects
  • Mahajan R, Itankar P. Phytochemical analysis and standardization of Pedalium murex Linn. Extract through HPLC methods. IJNP. 2021;35(1):32–37. doi: 10.5530/ijnp.2021.1.7
  • Amjad R, Mubeen B, Ali SS, et al. Green synthesis and characterization of copper nanoparticles using Fortunella margarita leaves. Polymers. 2021;13(24):4364. doi: 10.3390/polym13244364
  • Bharathi D, Diviya Josebin M, Vasantharaj S, et al. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyros montana and their antioxidant and antibacterial activities. J Nanostruct Chem. 2018;8(1):83–92. doi: 10.1007/s40097-018-0256-7
  • Shabatina T, Vernaya O, Shumilkin A, et al. Nanoparticles of bioactive Metals/metal oxides and their nanocomposites with antibacterial drugs for biomedical applications. Materials. 2022;15(10):3602. doi: 10.3390/ma15103602
  • Tahir A, Quispe C, Herrera-Bravo J, et al. Green synthesis, characterization and antibacterial, antifungal, larvicidal and anti-termite activities of copper nanoparticles derived from Grewia asiatica L. Bull National Res Centre. 2022;46(1):188. doi: 10.1186/s42269-022-00877-y
  • Byczkowska A, Kunikowska A, Kaźmierczak A. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma. 2013;250(1):121–128. doi: 10.1007/s00709-012-0383-9
  • Ultraviolet-visible spectrum of copper nanoparticles | Download Scientific Diagram [Internet]. [cited 2023 Aug 11]. Available from: https://www.researchgate.net/figure/Ultraviolet-visible-spectrum-of-copper-nanoparticles_fig1_317066284
  • Rameshwari KS, Abirami M, Christobel RGJ. Partial characterization of green synthesized silver nanoparticles of Cardiospermum halicacabum and butea monosperma aqueous extract combination (CHBMCSNP). Res J Pharm Technol. 2020;13(12):6218–6223. doi: 10.5958/0974-360X.2020.01084.7
  • Alshammari SO, Mahmoud SY, Farrag ES. Root extract and its applications | free full-text | synthesis of green copper nanoparticles using medicinal plant Krameria sp [Internet]. Molecules. [cited 2023 Aug 15];28(12):4629. Available from: https://www.mdpi.com/1420-3049/28/12/4629
  • Suárez-Cerda J, Espinoza-Gómez H, Alonso-Núñez G, et al. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc. 2017;21(3):341–348. doi: 10.1016/j.jscs.2016.10.005
  • Sangeetha G, Vidhya R, Xuan W. A traditional Chinese medicine compound (Jian Er) for presbycusis in a mouse model: reduction of apoptosis and protection of cochlear sensorineural cells and hearing. Int J Herb Med. 2018;6(6):127–135.
  • Moini H, Arroyo A, Vaya J, et al. Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state. Redox Rep. 1999;4(1–2):35–41. doi: 10.1179/135100099101534729
  • Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel). 2020;10(2):292. doi: 10.3390/nano10020292
  • Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6(3):399–408. doi: 10.1007/s13204-015-0449-z
  • Gholami M, Azarbani F, Hadi F, et al. Eco-friendly synthesis of copper nanoparticles using Mentha pulegium leaf extract: characterisation, antibacterial and cytotoxic activities. Mater Technol. 2022;37(10):1523–1531. doi: 10.1080/10667857.2021.1959214
  • Prakash MVD, Sampath S, Amudha K, et al. Eco-friendly green synthesis of copper nanoparticles from Tinospora cordifolia leaves: optical properties with biological evaluation of anti-microbial, anti-inflammatory and anti-oxidant applications. Mater Technol. 2023;38(1):2247908. doi: 10.1080/10667857.2023.2247908
  • Tharchanaa SB, Priyanka K, Preethi K, et al. Facile synthesis of Cu and CuO nanoparticles from copper scrap using plasma arc discharge method and evaluation of antibacterial activity. Mater Technol. 2021;36(2):97–104. doi: 10.1080/10667857.2020.1734721
  • S K, V A, K R, et al. One step preparation of green reduced copper oxide nanorods using Citrus sinensis L. peel extracts and evaluation of their photocatalytic degradation of Rose Bengal dye and antibacterial activity. Materials Technology. 2022;37(9):1230–1241. doi: 10.1080/10667857.2021.1929720
  • Maulana I, Fasya D, Ginting B. Biosynthesis of Cu nanoparticles using polyalthia longifolia roots extracts for antibacterial, antioxidant and cytotoxicity applications. Mater Technol. 2022;37(13):2517–2521. doi: 10.1080/10667857.2022.2044217
  • Aziz WJ, Abid MA, Hussein EH. Biosynthesis of CuO nanoparticles and synergistic antibacterial activity using mint leaf extract. Mater Technol. 2020;35(8):447–451. doi: 10.1080/10667857.2019.1692163
  • Ramadurai M, Rajendran G, Bama TS, et al. Biocompatible thiolate protected copper nanoclusters for an efficient imaging of lung cancer cells. J Photochem Photobiol, B. 2020;205:111845. doi: 10.1016/j.jphotobiol.2020.111845
  • Al-Kawmani AA, Alanazi KM, Farah MA, et al. Apoptosis-inducing potential of biosynthesized silver nanoparticles in breast cancer cells. J King Saud Univ Sci. 2020;32(4):2480–2488. doi: 10.1016/j.jksus.2020.04.002
  • Pajaniradje S, Mohankumar K, Pamidimukkala R, et al. Antiproliferative and apoptotic effects of sesbania grandiflora leaves in human cancer cells. Biomed Res Int. 2014;2014:474953. doi: 10.1155/2014/474953