Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
769
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photoluminescence, morphology and band gap in Europium-doped ZnS nanoparticles

, ORCID Icon, & ORCID Icon
Article: 2286822 | Received 10 Nov 2023, Accepted 19 Nov 2023, Published online: 30 Nov 2023

References

  • Fang D, Golberg Y, Zhai X, et al. ZnS nanostructures: from synthesis to applications, Prog. Mater Sci. 2011;56(2):175–10. doi: 10.1016/J.PMATSCI.2010.10.001
  • Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353–389. doi: 10.1002/adma.200390087
  • Fang X, Bando Y, Gautam UK, et al. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci. 2009;34:190–223. doi: 10.1080/10408430903245393
  • Kuchibhatla SVNT, Karakoti AS, Bera D, et al. One dimensional nanostructured materials, Prog. Mater Sci. 2007;52(5):699–913. doi: 10.1016/j.pmatsci.2006.08.001
  • Kumari P, Misra KP, Samanta S, et al. Interrelation of micro-strain, energy band gap and PL intensity in ce doped ZnS quantum structures. J Lumin. 2022;251:119258. doi: 10.1016/J.JLUMIN.2022.119258
  • Das Gupta P, Chattopadhyay S, Choudhary RJ, et al. Band offset in Zn0.965Cd0.035O/ZnO bilayer films. Mater Lett. 2011;65(13):2073–2075. doi: 10.1016/j.matlet.2011.03.109
  • Chattopadhyay S, Sen P, Andrews JT, et al. Effect of shell and shell thickness on photoluminescence (PL) of a CdSe/ZnS core – shell quantum dot. J Phys Conf Ser. 2012;365:12037. doi: 10.1088/1742-6596/365/1/012037
  • Aboelwafa MA, Abdelghany AM, Meikhail MS. Preparation, characterization, and antibacterial activity of ZnS-NP’s filled Polyvinylpyrrolidone/Chitosan thin films, Biointerface Res. Appl Chem. 2021;11:14336–14343. doi: 10.33263/BRIAC116.1433614343
  • Zhou K, Yuan Y, Chen J, et al. Fabrication of antireflective hydrophobic periodic micro-hole structures on ZnS surface by femtosecond laser direct writing. J Phys Conf Ser. 2021;1885:032080. doi: 10.1088/1742-6596/1885/3/032080
  • Dhupar A, Kumar S, Tuli HS, et al. In-doped ZnS nanoparticles: structural, morphological, optical and antibacterial properties. Appl Phys A. 2021;127:1–11. doi: 10.1007/S00339-021-04425-9
  • Garcia-Calvo E, Cabezas-Sanchez P, Luque-Garcia JL. In-vitro and in-vivo evaluation of the molecular mechanisms involved in the toxicity associated to CdSe/ZnS quantum dots exposure. Chemosphere. 2021;263:128170. doi: 10.1016/J.CHEMOSPHERE.2020.128170
  • Pourmoslemi S, Seif F, Mahjub R. Enhanced antibacterial activity of ag-doped ZnS nanoparticles synthesised by a microwave-assisted polyol method, Mater. Res Innov. 2021;25(7):399–403. doi: 10.1080/14328917.2020.1831151
  • Fang X, Zhai T, Gautam UK, et al. ZnS nanostructures: from synthesis to applications, Prog. Mater Sci. 2011;56(2):175–287. doi: 10.1016/J.PMATSCI.2010.10.001
  • Dengo N, Vittadini A, Natile MM, et al. In-depth study of ZnS nanoparticle surface properties with a combined experimental and theoretical approach. J Phys Chem C. 2020;124(14):7777–7789. doi: 10.1021/acs.jpcc.9b11323
  • Kumawat A, Misra KP, Chattopadhyay S. Band gap engineering and relationship with luminescence in rare-earth elements doped ZnO: an overview, Mater. Technol. 2022;37(11):1595–1610. doi: 10.1080/10667857.2022.2082351
  • Kumari P, Misra KP, Chattopadhyay S, et al. A brief review on transition metal ion doped ZnO nanoparticles and its optoelectronic applications, Mater. Today Proc. 2021;43:3297–3302. doi: 10.1016/j.matpr.2021.02.299
  • Islam F, Shohag S, Uddin M, et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials. 2022;15:2160. doi: 10.3390/ma15062160
  • Shanmugam N, Cholan S, Viruthagiri G, et al. Synthesis and characterization of Ce3+-doped flowerlike ZnS nanorods. Appl Nanosci. 2014;4(3):359–365. doi: 10.1007/s13204-013-0217-x
  • Manzoor K, Vadera SR, Kumar N, et al. Multicolor electroluminescent devices using doped ZnS nanocrystals. Appl Phys Lett. 2004;84:284–286. doi: 10.1063/1.1639935
  • Hu H, Zhang W. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt Mater (Amst). 2006;28:536–550. doi: 10.1016/J.OPTMAT.2005.03.015
  • Kim MR, Chung JH, Jang D-J. Spectroscopy and dynamics of Mn2+ in ZnS nanoparticles. Phys Chem Chem Phys. 2009;11:1003–1006. doi: 10.1039/B813452A
  • Bol AA, Meijerink A. Luminescence of nanocrystalline ZnS:Pb2+. Phys Chem Chem Phys. 2001;3:2105–2112. doi: 10.1039/B100968K
  • Dharani Devi M, Vimala Juliet A, Ade R, et al. Enhancement in optoelectronic properties of europium-doped ZnS thin films prepared by nebulizer spray technique for UV photodetection applications. Mater Sci Semicond Process. 2022;144(2022):106572. doi: 10.1016/j.mssp.2022.106572
  • Wang X, Zhang H, Li J, et al. Effect of Eu doping concentration on the morphologies and optical properties of ZnO film prepared by ultrasonic spray pyrolysis. J Mater Sci Mater Electron. 2013;24:1883–1887. doi: 10.1007/s10854-012-1029-6
  • Yılmaz S, Polat İ, Tomakin M, et al. A research on growth and characterization of CdS: Eu thin films. Appl Phys A. 2019;125:67. doi: 10.1007/s00339-018-2369-8
  • Rivera-Medina MJ, Hernández-Torres J, Boldú-Olaizola JL, et al. Synthesis of europium-doped ZnS nano-crystalline thin films with strong blue photoluminescence. RSC Adv. 2016;6(109):107613–107621. doi: 10.1039/c6ra24300b
  • Kumawat A, Chattopadhyay S, Misra KP. Significant impact of co-doping Eu-doped ZnO nanoparticles with Li on structural–optical properties relationship. Mater Technol. 2023;38(1):2253646. doi: 10.1080/10667857.2023.2253646
  • Sharma A, Khangarot RK, Chattopadhyay S, et al. Band gap reduction and improved ferromagnetic ordering via bound magnetic polarons in Zn (Al, Ce) O nanoparticles. Mater Technol. 2023;38(1):2151114. doi: 10.1080/10667857.2022.2151114
  • Kumawat A, Misra KP, Chattopadhyay S. Band gap engineering and relationship with luminescence in rare-earth elements doped ZnO: an overview. Mater Technol. 2022;37(11):1595–1610. doi: 10.1080/10667857.2022.2082351
  • Sharma A, Khangarot RK, Kumar N, et al. Rise in UV and blue emission and reduction of surface roughness due to the presence of Ag and Al in monocrystalline ZnO films grown by sol-gel spin coating. Mater Technol. 2021;36(9):541–551. doi: 10.1080/10667857.2020.1776029
  • Misra KP, Kumawat A, Shahee A, et al. Effect on optical and structural parameters in heavy Ca-doped ZnO nanostructures. Mater Technol. 2021;36(9):529–540. doi: 10.1080/10667857.2020.1776028
  • Misra KP, Jain S, Agarwala A, et al. Effective mass model supported band gap variation in cobalt-doped ZnO nanoparticles obtained by co-precipitation. Semiconductors. 2020;54(3):311–316. doi: https://doi.org/10.1134/S1063782620030136
  • Jothibas M, Manoharan C, Johnson Jeyakumar S, et al. Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles, sol. Solar Energy. 2018;159:434–443. doi: 10.1016/J.SOLENER.2017.10.055
  • Sagar CKK, Sajan P, Bushiri MJ. Eu3+ and Cu2+ ions doped ZnS microspheres emission in the yellow–orange region. J Mater Sci Mater Electron. 2019;30(19):18220–18226. doi: https://doi.org/10.1007/s10854-019-02176-1
  • Chattopadhyay S, Misra KP, Agarwala A, et al. Correlated quartic variation of band gap and NBE energy in sol-gel derived Zn1−xCoxO nanoparticles. Mater Chem Phys. 2019;227:236–241. doi: 10.1016/J.MATCHEMPHYS.2019.02.003
  • Kole AK, Kumbhakar P. Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results Phys. 2012;2:150–155. doi: 10.1016/j.rinp.2012.09.010
  • Gawai UP, Khawal HA, Shripathi T, et al. A study on the synthesis, pair distribution function and diverse properties of cobalt doped ZnS nanowires. Cryst Eng Comm. 2016;18(8):1439–1445. doi: https://doi.org/10.1039/C5CE02253C
  • Iranmanesh P, Saeednia S, Nourzpoor M. Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chinese Phys B. 2015;24(4):046104. doi: https://doi.org/10.1088/1674-1056/24/4/046104
  • Goswami N, Sen P. Water-induced stabilization of ZnS nanoparticles. Solid State Commun. 2004;132(11):791–794. doi: 10.1016/J.SSC.2004.09.022
  • Rana MS, Das SK, Rahman MO, et al. Vanadium doped ZnS nanoparticles: effect of vanadium concentration on structural, optical and electrical properties. Trans Electr Electron Mater. 2021;22(5):612–621. doi: https://doi.org/10.1007/S42341-020-00265-1
  • Singh Lotey G, Jindal Z, Singhi V, et al. Structural and photoluminescence properties of Eu-doped ZnS nanoparticles. Mater Sci Semicond Process. 2013;16(6):2044–2050. doi: 10.1016/j.mssp.2013.07.039
  • Mahanthappa M, Kottam N, Yellappa S. Electrocatalytic performance of a zinc sulphide nanoparticles-modified carbon paste electrode for the simultaneous determination of acetaminophen, guanine and adenine. Anal Methods. 2018;10(11):1362–1371. doi: https://doi.org/10.1039/C8AY00007G
  • Bhushan M, Jha R, Bhardwaj R. Reduced band gap and diffusion controlled spherical n-type ZnS nanoparticles for absorption of UV-Vis region of solar spectrum. J Phys Chem Solids. 2019;135:109021. doi: 10.1016/J.JPCS.2019.05.018
  • Quynh Hoa TT, Van Vu L, Canh TD, et al. Preparation of ZnS nanoparticles by hydrothermal method, in: j. Phys. Conf. Ser. Institute of Physics Publishing; 2009. p. 12081. doi: 10.1088/1742-6596/187/1/012081
  • Liu X, Cui J, Zhang L, et al. A solvothermal route to semiconductor ZnS micrometer hollow spheres with strong photoluminescence properties, Mater. Lett. 2006;60(20):2465–2469. doi: 10.1016/j.matlet.2006.01.019
  • Pal M, Mathews NR, Morales ER, et al. Synthesis of Eu+3 doped ZnS nanoparticles by a wet chemical route and its characterization. Opt Mater (Amst). 2013;35:2664–2669. doi: 10.1016/J.OPTMAT.2013.08.003
  • Poornaprakash B, Vattikuti SVP, Subramanyam K, et al. Photoluminescence and hydrogen evolution properties of ZnS:Eu quantum dots. Ceram Int. 2021;47(20):28976–28984. doi: 10.1016/j.ceramint.2021.07.058
  • Ahemen I, De DK, Melludu OC. Synthesis and characterization of europium-doped zinc sulphide (ZnS: eu) nano particles: nano Red Phosphor. Adv Sci Eng Med. 2013;5(11):1188–1194. doi: 10.1166/asem.2013.1403
  • Bindu KR, Safeera TA, Anila EI. Pure red luminescence and concentration-dependent tunable emission color from europium-doped zinc sulfide nanoparticles. J Mater Sci Mater Electron. 2022;33(22):17793–17801. doi: https://doi.org/10.1007/s10854-022-08644-5
  • Wang L, Xu X, Yuan X. Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. J Lumin. 2010;130(1):137–140. doi: 10.1016/j.jlumin.2009.07.036
  • Singh M, Goyal M, Devlal K. Size and shape effects on the band gap of semiconductor compound nanomaterials. J Taibah Univ Sci. 2018;12(4):470–475. doi: 10.1080/16583655.2018.1473946