Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
511
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of NO-Releasing electrospun chitosan nanofibrous scaffolds for osteoconduction

, , , , &
Article: 2286834 | Received 19 Sep 2023, Accepted 16 Nov 2023, Published online: 04 Dec 2023

References

  • Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Int. 2006 Dec;17(12):1726–33. doi: 10.1007/s00198-006-0172-4
  • Shaw CK, Li YM, Wang LY, et al. Prediction of bone fracture by bone mineral density in Taiwanese. J Formos Med Assoc. 2001;100(12):805–15. PMID: 11802519.
  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25(6):1539–1560. doi: 10.1002/btpr.246
  • Lienemann PS, Lutolf MP, Ehrbar M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1078–1089. doi: 10.1016/j.addr.2012.03.010
  • Yilgor P, Tuzlakoglu K, Reis RL, et al. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials. 2009;30(21):3551–3559. doi: 10.1016/j.biomaterials.2009.03.024
  • Srouji S, Ben-David D, Lotan R, et al. Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: in vitro and in vivo evaluation. Tissue Eng Part A. 2010;17(3–4):269–277. doi: 10.1089/ten.tea.2010.0250
  • Kang J, Tada S, Kitajima T, et al. Immobilization of bone morphogenetic protein on DOPA- or dopamine-treated titanium surfaces to enhance osseointegration. Biomed Res Int. 2013;2013:265980. doi: 10.1155/2013/265980
  • Yun Y-P, Kim SE, Kang EY, et al. The effect of bone morphogenic protein-2 (BMP-2)-immobilizing heparinized-chitosan scaffolds for enhanced osteoblast activity. Tissue Eng Regen Med. 2013;10(3):122–130. doi: 10.1007/s13770-013-0386-4
  • Fan J, Park H, Lee MK, et al. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model. Tissue Eng Part A. 2014;20(15–16):2169–2179. doi: 10.1089/ten.tea.2013.0523
  • Tejeda-Montes E, Smith KH, Rebollo E, et al. Bioactive membranes for bone regeneration applications: effect of physical and biomolecular signals on mesenchymal stem cell behavior. Acta Biomaterialia. 2014;10(1):134–141. doi: 10.1016/j.actbio.2013.09.001
  • Li CH, Wang JW, Ho MH, et al. Immobilization of naringin onto chitosan substrates by using ozone activation. Colloids Surf B Biointerfaces. 2014;115:1–7. doi: 10.1016/j.colsurfb.2013.11.006
  • Li L, Zhou G, Wang Y, et al. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials. 2015;37:218–229. doi: 10.1016/j.biomaterials.2014.10.015
  • Evans DM, Ralston SH. Nitric oxide and bone. J Bone Mineral Res. 1996;11(3):300–305. doi: 10.1002/jbmr.5650110303
  • Saura M, Tarin C, Zaragoza C. Recent insights into the implication of nitric oxide in osteoblast differentiation and proliferation during bone development. ScientificWorldjournal. 2010;10:624–632. doi: 10.1100/tsw.2010.58
  • Wimalawansa SJ. Nitric oxide: novel therapy for osteoporosis. Expert Opin Pharmacother. 2008;9(17):3025–3044. doi: 10.1517/14656560802197162
  • Diwan AD, Wang MX, Jang D, et al. Nitric oxide modulates fracture healing. J Bone Mineral Res. 2000;15(2):342–351. doi: 10.1359/jbmr.2000.15.2.342
  • Park J-W, Means G. Reaction of drugs with sodium nitroprusside as a source of nitrosamines. Arch Pharm Res. 1991;14(2):118–123. doi: 10.1007/BF02892015
  • Leeuwenkamp OR, van Bennekom WP, van der Mark EJ, et al. Nitroprusside, antihypertensive drug and analytical reagent. Review of (photo)stability, pharmacology and analytical properties. Pharm Weekbl Sci. 1984;6(4):129–140. doi: 10.1007/BF01954040
  • Taylor TH, Styles M, Lamming AJ. Sodium nitroprusside as a hypotensive agent in general anaesthesia. Br J Anaesth. 1970;42(10):859–864. doi: 10.1093/bja/42.10.859
  • Rőszer T. Nitric oxide signaling and nitrosative stress in the musculoskeletal system. In: Laher I, editor Systems biology of free radicals and antioxidants. Berlin Heidelberg: Springer; 2014. pp. 2895–2926.
  • Felka T, Ulrich C, Rolauffs B, et al. Nitric oxide activates signaling by c-raf, MEK, p-JNK, p38 MAPK and p53 in human mesenchymal stromal cells inhibits their osteogenic differentiation by blocking expression of Runx2. J Stem Cell Res Ther. 2014;4(04):e1187. doi: 10.4172/2157-7633.1000195
  • Aitken D, West D, Smith F, et al. Cyanide toxicity following nitroprusside induced hypotension. Can Anaesth Soc J. 1977;24(6):651–660. doi: 10.1007/BF03006709
  • Lu Y, Slomberg DL, Schoenfisch MH. Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Biomaterials. 2014;35(5):1716–1724. doi: 10.1016/j.biomaterials.2013.11.015
  • Lu Y, Slomberg DL, Shah A, et al. Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromolecules. 2013;14(10):3589–3598. doi: 10.1021/bm400961r
  • Nablo BJ, Prichard HL, Butler RD, et al. Inhibition of implant-associated infections via nitric oxide release. Biomaterials. 2005;26(34):6984–6990. doi: 10.1016/j.biomaterials.2005.05.017
  • Worley BV, Slomberg DL, Schoenfisch MH. Nitric oxide-releasing quaternary ammonium-modified poly(amidoamine) dendrimers as dual action antibacterial agents. Bioconjugate Chem. 2014;25(5):918–927. doi: 10.1021/bc5000719
  • Yeom YE, Kim MA, Kim J, et al. Anti-inflammatory effects of the extract of solanum nigrum L. on an acute ear edema mouse model. Mater Technol. 2019;34(14):851–857. doi: 10.1080/10667857.2019.1638671
  • Thierry B, Merhi Y, Silver J, et al. Biodegradable membrane-covered stent from chitosan-based polymers. J Biomed Mater Res Part A. 2005;75A(3):556–566. doi: 10.1002/jbm.a.30450
  • Lowe A, Deng W, Smith DW, et al. Coated melt-spun acrylonitrile-based suture for delayed release of nitric oxide. Mater Lett. 2014;125:221–223. doi: 10.1016/j.matlet.2014.03.174
  • Koh A, Carpenter AW, Slomberg DL, et al. Nitric oxide-releasing silica nanoparticle-doped polyurethane electrospun fibers. ACS Appl Mater Inter. 2013;5(16):7956–7964. doi: 10.1021/am402044s
  • Koh A, Lu Y, Schoenfisch MH. Fabrication of nitric oxide-releasing porous polyurethane membranes-coated needle-type implantable glucose biosensors. Anal Chem. 2013;85(21):10488–10494. doi: 10.1021/ac402312b
  • Liu HA, Balkus KJ. Novel delivery system for the bioregulatory agent nitric oxide. Chem Mater. 2009;21(21):5032–5041. doi: 10.1021/cm901358z
  • Baldik Y, Diwan AD, Appleyard RC, et al. Deletion of iNOS gene impairs mouse fracture healing. Bone. 2005;37(1):32–36. doi: 10.1016/j.bone.2004.10.002
  • Akins R, Rabolt J. Electrospinning fundamentals and applications. In: Buddy D, RatnerAllan S, HoffmanFrederick J, SchoenJack E, editors. Biomaterials science. 3rd ed. Cambridge, MA, USA: Academic Press; 2013. p. 332–339.
  • Aadil KR, Nathani A, Sharma CS, et al. Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications. Mater Technol. 2018;33(8):507–512. doi: 10.1080/10667857.2018.1473234
  • Chung TW, Lu Y-F, Wang H-Y, et al. Growth of human endothelial cells on different concentrations of gly-arg-gly-asp grafted chitosan surface. Artif Organs. 2003;27(2):155–161. doi: 10.1046/j.1525-1594.2003.07045.x
  • Sadati SMM, Shahgholian-Ghahfarrokhi N, Shahrousvand E, et al. Edible chitosan/cellulose nanofiber nanocomposite films for potential use as food packaging. Mater Technol. 2021;37(10):1276–1288. doi: 10.1080/10667857.2021.1934367
  • Lehr CM, Bouwstra JA, Schacht EH, et al. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharmaceut. 1992;78(1–3):43–48. doi: 10.1016/0378-5173(92)90353-4
  • He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharmaceut. 1998;166(1):75–88. doi: 10.1016/S0378-5173(98)00027-1
  • Wang K, Buschle-Diller G, Misra RDK. Chitosan-based injectable hydrogels for biomedical. Mater Technol. 2015;30(sup5):B198–B205. doi: 10.1179/17535557B15Y.000000008
  • Ho MH, Liao MH, Lin YL, et al. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation. Int J Nanomedicine. 2014 Sep 9;9:4293–4304. doi: 10.2147/IJN.S68012
  • Salehi F, Hossein B, Gholamreza K, et al. Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA. RSC Adv. 2017;7(68):43141–43150. doi: 10.1039/C7RA06793C
  • Liu D, Shu G, Jin F, et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci Adv. 2020 Oct 9;6(41):eabb7422. doi: 10.1126/sciadv.abb7422
  • Vesey CJ, Batistoni GA. The determination and stability of sodium nitroprusside in aqueous solutions (determination and stability of SNP). J Clin Pharm Therapeutics. 1977;2(2):105–117. doi: 10.1111/j.1365-2710.1977.tb00080.x
  • Park ES, Lind A-K, Dahm-Kähler P, et al. RUNX2 transcription factor regulates gene expression in luteinizing granulosa cells of rat ovaries. Mol Endocrinol. 2010;24(4):846–858. doi: 10.1210/me.2009-0392
  • Cho J, Heuzey M-C, Bégin A, et al. Viscoelastic properties of chitosan solutions: effect of concentration and ionic strength. J Food Eng. 2006;74(4):500–515. doi: 10.1016/j.jfoodeng.2005.01.047
  • Son WK, Youk JH, Lee TS, et al. Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci B Polym Phys. 2004;42(1):5–11. doi: 10.1002/polb.10668
  • Mit-Uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromole Chem Phys. 2004;205(17):2327–2338. doi: 10.1002/macp.200400225
  • Deitzel JM, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42(1):261–272. doi: 10.1016/S0032-3861(00)00250-0
  • Demir MM, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers. Polymer. 2002;43(11):3303–3309. doi: 10.1016/S0032-3861(02)00136-2
  • Sangsanoh P, Supaphol P. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules. 2006;7(10):2710–2714. doi: 10.1021/bm060286l
  • Holzbecher M, Knop O, Falk M. Infrared studies of water in crystalline hydrates: sodium nitroprusside dihydrate, na2[Fe(cn)5NO]•2H2O Na2[Fe(CN)5NO]•2H2O. Can J Chem. 1971;49(9):1413–1424. doi: 10.1139/v71-233
  • Tang S, Edman L. On-demand photochemical stabilization of doping in light-emitting electrochemical cells. Electrochimica Acta. 2011;56(28):10473–10478. doi: 10.1016/j.electacta.2011.01.073
  • Wold KA, Damodaran VB, Suazo LA, et al. Fabrication of biodegradable polymeric nanofibers with covalently attached NO donors. ACS Appl Mater Inter. 2012;4(6):3022–3030. doi: 10.1021/am300383w
  • Worley BV, Soto RJ, Kinsley PC, et al. Active release of nitric xxide-releasing dendrimers from electrospun polyurethane fibers. ACS Biomater Sci Eng. 2016;2(3):426–437. doi: 10.1021/acsbiomaterials.6b00032
  • Bakolitsa C, Cohen DM, Bankston LA, et al. Structural basis for vinculin activation at sites of cell adhesion. Nature. 2004;430(6999):583–586. doi: 10.1038/nature02610
  • Keselowsky BG, Collard DM, García AJ, Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci; USA. 2005. Apr 26;102(17):5953–7. doi: 10.1073/pnas.0407356102
  • Haÿ E, Lemonnier L, Modrowski D, et al. N- and E-cadherin mediate early human calvaria osteoblast differentiation promoted by bone morphogenetic protein-2. J Cell Physiol. 2000;Apr 183(1):117–128. doi: 10.1002
  • Civitelli R. Cell–cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys. 2008;473(2):188–192. doi: 10.1016/j.abb.2008.04.005
  • Stains JP, Civitelli R. Cell-to-cell interactions in bone. Biochem Biophys Res Commun. 2005;328(3):721–727. doi: 10.1016/j.bbrc.2004.11.078
  • Kim SM, Yuen T, Iqbal J, et al. The NO–cGMP–PKG pathway in skeletal remodeling. Ann N Y Acad Sci. 2021;1487(1):21–30. doi: 10.1111/nyas.14486
  • Lai CF, Chaudhary L, Fausto A, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001;276(17):14443–14450. doi: 10.1074/jbc.M010021200
  • Rangaswami H, Marathe N, Zhuang S, et al. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J Biol Chem. 2009;284(22):14796–14808. doi: 10.1074/jbc.M806486200
  • Huang RL, Yuan Y, Tu and J, et al. Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation. Cell Death Dis. 2014;5(4):e1187. doi: 10.1038/cddis.2014.101