Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
494
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Glutathione and acid dual-responsive nanomaterials loaded with methotrexate and magnolol for triple-negative breast cancer treatment

, , , , , , , , , , & show all
Article: 2288780 | Received 26 Aug 2023, Accepted 23 Nov 2023, Published online: 02 Dec 2023

References

  • Medina MA, Oza G, Sharma A, et al. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int J Environ Res Public Health. 2020;17(6):2078. doi: 10.3390/ijerph17062078
  • Won KA, Spruck C. Triple‑negative breast cancer therapy: Current and future perspectives. Int J Oncol. 2020;57(6):1245–12. doi: 10.3892/ijo.2020.5135
  • Deepak K, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683. doi: 10.1016/j.phrs.2020.104683
  • Derakhshan F, Reis-Filho JS. Pathogenesis of triple-negative breast cancer. Annu Rev Pathol. 2022;17(1):181–204. doi: 10.1146/annurev-pathol-042420-093238
  • Kudelova E, Smolar M, Holubekova V, et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Mol Sci. 2022;23(23):14937. doi: 10.3390/ijms232314937
  • Li Y, Zhang H, Merkher Y, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15(1):121. doi: 10.1186/s13045-022-01341-0
  • Colleoni M, Gray KP, Gelber S, et al. Low-dose oral cyclophosphamide and methotrexate maintenance for hormone receptor–negative early breast cancer: international breast cancer study group trial 22-00. J Clin Oncol. 2016;34(28):3400. doi: 10.1200/JCO.2015.65.6595
  • Wei CW, Yu YL, Chen YH, et al. Anticancer effects of methotrexate in combination with α‑tocopherol and α‑tocopherol succinate on triple‑negative breast cancer. Oncol Rep. 2019;41(3):2060–2066. doi: 10.3892/or.2019.6958
  • Yang V, Gouveia MJ, Santos J, et al. Breast cancer: insights in disease and influence of drug methotrexate. RSC Med Chem. 2020;11(6):646–664. doi: 10.1039/D0MD00051E
  • Bai X, Ni J, Beretov J, et al. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–163. doi: 10.1016/j.ctrv.2018.07.004
  • Mehraj U, Ganai RA, Macha MA, et al. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell Oncol. 2021;44(6):1–21. doi: 10.1007/s13402-021-00634-9
  • Pan G, Liu Y, Shang L, et al. EMT‐associated microRnas and their roles in cancer stemness and drug resistance. Cancer Commun. 2021;41(3):199–217. doi: 10.1002/cac2.12138
  • Lim B, Woodward WA, Wang X, et al. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer. 2018;18(8):485–499. doi: 10.1038/s41568-018-0010-y
  • Peng C-Y, Yu C-C, Huang C-C, et al. Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas. J Formosan Med Assoc. 2022;121(1):51–57. doi: 10.1016/j.jfma.2021.01.009
  • Tang H, Zhang Y, Li D, et al. Discovery and synthesis of novel magnolol derivatives with potent anticancer activity in non-small cell lung cancer. Eur J Med Chem. 2018;156:190–205. doi: 10.1016/j.ejmech.2018.06.048
  • Wang Y, Sun C, Huang L, et al. Magnolol-loaded cholesteryl biguanide conjugate hydrochloride nanoparticles for triple-negative breast cancer therapy. Int J Pharmaceut. 2022;615:121509. doi: 10.1016/j.ijpharm.2022.121509
  • Zhao M, Zheng Y-H, Zhao Q-Y, et al. Synthesis and evaluation of new compounds bearing 3-(4-aminopiperidin-1-yl) methyl magnolol scaffold as anticancer agents for the treatment of non-small cell lung cancer via targeting autophagy. Eur J Med Chem. 2021;209:112922. doi: 10.1016/j.ejmech.2020.112922
  • Li Y-C, Wong C-N, Hsu F-T, et al. Accessing apoptosis induction and metastasis inhibition effect of magnolol on triple negative breast cancer in vitro. In Vivo. 2023;37(3):1028–1036. doi: 10.21873/invivo.13177
  • Liu Y, Cao W, Zhang B, et al. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep. 2013;3(1):3098. doi: 10.1038/srep03098
  • Kundu M, Das S, Das CK, et al. Magnolol induces cytotoxic autophagy in glioma by inhibiting PI3K/AKT/mTOR signaling. Exp Cell Res. 2023;424(1):113488. doi: 10.1016/j.yexcr.2023.113488
  • Wang Y-D, Sun X-J, Yang W-J, et al. Magnolol exerts anticancer activity in hepatocellular carcinoma cells through regulating endoplasmic reticulum stress-mediated apoptotic signaling. Onco Targets Ther. 2018;Volume 11:5219–5226. doi: 10.2147/OTT.S168887
  • H-B L, Yi X, J-M G, et al. Magnolol-lnduced H460 cells death via autophagy but not apoptosis. Arch Pharm Res. 2007;30(12):1566–1574. doi: 10.1007/BF02977326
  • Tan L, Ma B, Chen L, et al. Toxicity evaluation and anti-tumor study of docetaxel loaded mPEG-polyester micelles for breast cancer therapy. J Biomed Nanotechnol. 2017;13(4):393–408. doi: 10.1166/jbn.2017.2356
  • Kurd M, Sadegh Malvajerd S, Rezaee S, et al. Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation. Artific Cells Nanomed Biotechnol. 2019;47(1):2123–2133. doi: 10.1080/21691401.2019.1616553
  • Chen B, He X-Y, Yi X-Q, et al. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl Mater Inter. 2015;7(28):15148–15153. doi: 10.1021/acsami.5b03866
  • Tian X, He X, Yao A, et al. The properties of cholesterol-modified pullulan nanoparticles with different PEG coatings and their anti-hepatoblastoma cell effects. Mater Technol. 2022;37(12):2276–2288. doi: 10.1080/10667857.2022.2029288
  • Saeednia L, Yao L, Cluff K, et al. Sustained releasing of methotrexate from injectable and thermosensitive chitosan–carbon nanotube hybrid hydrogels effectively controls tumor cell growth. ACS Omega. 2019;4(2):4040–4048. doi: 10.1021/acsomega.8b03212
  • Fathi M, Barar J, Erfan-Niya H, et al. Methotrexate-conjugated chitosan-grafted pH-and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int j biol macromol. 2020;154:1175–1184. doi: 10.1016/j.ijbiomac.2019.10.272
  • Chen C, Zhong W, Du S, et al. Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B. 2022;13(6):2510–2543. doi: 10.1016/j.apsb.2022.12.013
  • Mohanty A, Uthaman S, Park I-K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules. 2020;25(19):4377. doi: 10.3390/molecules25194377
  • Zhang N-N, Shen X, Liu K, et al. Polymer-Tethered nanoparticles: from surface engineering to directional self-assembly. Acc Chem Res. 2022;55(11):1503–1513. doi: 10.1021/acs.accounts.2c00066
  • Tuncel D, Demir HV. Conjugated polymer nanoparticles. Nanoscale. 2010;2(4):484–494. doi: 10.1039/b9nr00374f
  • Soares DCF, Domingues SC, Viana DB, et al. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed Pharmacother. 2020;131:110695. doi: 10.1016/j.biopha.2020.110695
  • Cao Z, Liu R, Li Y, et al. MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. Breast Cancer Res. 2023;25(1):1–15. doi: 10.1186/s13058-022-01599-9
  • Abolmaali SS, Zarenejad S, Mohebi Y, et al. Biotin receptor-targeting nanogels loaded with methotrexate for enhanced antitumor efficacy in triple-negative breast cancer in vitro and in vivo models. Int J Pharmaceut. 2022;624:122049. doi: 10.1016/j.ijpharm.2022.122049
  • Lin H-L, Cheng W-T, Chen L-C, et al. Honokiol/magnolol-loaded self-assembling Lecithin-based mixed polymeric micelles (lb MPMs) for improving solubility to enhance oral bioavailability. Int J Nanomed. 2021;16:651–665. doi: 10.2147/IJN.S290444
  • Zheng Y, Ye J, Zhang Z, et al. A new type of glutathione-responsive anti-osteosarcoma prodrug nanoparticles. Mater Technol. 2022;37(9):953–961. doi: 10.1080/10667857.2021.1908769
  • Shi P, Cheng Z, Zhao K, et al. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnol. 2023;21(1):1–27. doi: 10.1186/s12951-023-01826-1
  • Kang H, Kim J-D, Han S-H, et al. Self-aggregates of poly (2-hydroxyethyl aspartamide) copolymers loaded with methotrexate by physical and chemical entrapments. JControlled Release. 2002;81(1–2):135–144. doi: 10.1016/S0168-3659(02)00058-5
  • Wu Y, He L, Zhou H. Preparation of hydrophobically modified carboxylated pullulan nanoparticles for evaluating the effect of hydrophobic substitution on the properties and functions of nanoparticles. Mater Technol. 2022;37(10):1467–1477. doi: 10.1080/10667857.2021.1956230
  • Shi J, Yang X, Li Y, et al. MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing. Biomaterials. 2020;256:120221. doi: 10.1016/j.biomaterials.2020.120221
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Targeting. 2016;24(3):179–191. doi: 10.3109/1061186X.2015.1051049