Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
787
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine learning-assisted pattern recognition algorithms for estimating ultimate tensile strength in fused deposition modelled polylactic acid specimens

, , , , , , , & show all
Article: 2295089 | Received 19 Nov 2023, Accepted 11 Dec 2023, Published online: 17 Dec 2023

References

  • Zeba G, Dabić M, Čičak M, et al. Technology mining: artificial intelligence in manufacturing. Technol Forecasting Social Change. 2021;171:120971. doi: 10.1016/j.techfore.2021.120971
  • Li BH, Hou BC, Yu WT, et al. Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers Inf Technol Electronic Eng. 2017;18(1):86–11. doi: 10.1631/FITEE.1601885
  • Buccino F, Zagra L, Longo E, et al. Osteoporosis and covid-19: detected similarities in bone lacunar-level alterations via combined AI and advanced synchrotron testing. Mater Design. 2023;231:112087. doi: 10.1016/j.matdes.2023.112087
  • Buccino F, Aiazzi I, Casto A, et al. The synergy of synchrotron imaging and convolutional neural networks towards the detection of human micro-scale bone architecture and damage. J Mech Behav Biomed Mater. 2023;137:105576. doi: 10.1016/j.jmbbm.2022.105576
  • Xu P, Ji X, Li M, et al. Small data machine learning in materials science. Npj Comput Mater. 2023;9(1):42. doi: 10.1038/s41524-023-01000-z
  • Kreuzberger D, Kühl N, Hirschl S. Machine learning operations (mlops): overview, definition, and architecture. IEEE Access; 2023. doi:10.1109/ACCESS.2023.3262138
  • Gori M, Betti A, Melacci S. Machine learning: a constraint-based approach. Elsevier; 2023. doi:10.1016/C2020-0-03158-0
  • Masini RP, Medeiros MC, Mendes EF. Machine learning advances for time series forecasting. Journal Of Economic Surveys. 2023;37(1):76–111. doi: 10.1111/joes.12429
  • Kunapuli G. Ensemble Methods for machine learning. Simon and Schuster; 2023. https://books.google.co.in/books/about/Ensemble_Methods_for_Machine_Learning.html?id=wXGazgEACAAJ&redir_esc=y
  • Du Y, Mukherjee T, DebRoy T. Conditions for void formation in friction stir welding from machine learning. Npj Comput Mater. 2019;5:68. doi:10.1038/s41524-019-0207-y
  • Hartl R, Praehofer B, Zaeh MF. Prediction of the surface quality of friction stir welds by the analysis of process data using Artificial neural networks. Proc Inst Mech Eng L J Mat Des Appl. 2020. doi: 10.1177/1464420719899685
  • Du Y, Mukherjee T, DebRoy T. Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Appl Mater Today. 2021;24:101123. doi: 10.1016/j.apmt.2021.101123
  • Maleki E, Bagherifard S, Guagliano M. Correlation of residual stress, hardness and surface roughness with crack initiation and fatigue strength of surface treated additive manufactured AlSi10Mg: experimental and machine learning approaches. J Mater Res Technol. 2023;24:3265–3283. doi: 10.1016/j.jmrt.2023.03.193
  • Mishra A, Vats A. Supervised machine learning classification algorithms for detection of fracture location in dissimilar friction stir welded joints. Frattura ed Integrità Strutturale. 2021;15(58):242–253. doi: 10.3221/IGF-ESIS.58.18
  • Arbaoui A, Ouahabi A, Jacques S, et al. Wavelet-based multiresolution analysis coupled with deep learning to efficiently monitor cracks in concrete. Frattura ed Integrità Strutturale. 2021;15(58):33–47. doi: 10.3221/IGF-ESIS.58.03
  • Pham Bao T, Le-Ngoc V, Vuong Cong L, et al. Damage assessment in beam-like structures by correlation of spectrum using machine learning. Frattura ed Integrità Strutturale. 2023;17(65):300–319. doi: 10.3221/IGF-ESIS.65.20
  • Nguyen T-H, Vu A-T. Evaluating structural safety of trusses using machine learning. Frattura ed Integrità Strutturale. 2021;15(58):308–318. doi: 10.3221/IGF-ESIS.58.23
  • De Santis A, Iacoviello D, Di Cocco V, et al. Classification of ductile cast iron specimens: a machine learning approach. Frattura ed Integrità Strutturale. 2017;11(42):231–238. doi: 10.3221/IGF-ESIS.42.25
  • Nguyen T-H, Vu A-T. Weight optimization of steel lattice transmission towers based on differential evolution and machine learning classification technique. Frattura ed Integrità Strutturale. 2021;16(59):172–187. doi: 10.3221/IGF-ESIS.59.13
  • Xiong Z, She J, Liang Z, et al. Structural Health evaluation of Arch Bridge by field test and Optimized BPNN algorithm. Frattura ed Integrità Strutturale. 2023;17(65):160–177. doi: 10.3221/IGF-ESIS.65.11
  • Bui-Tien T, Bui-Ngoc D, Nguyen-Tran H, et al. Damage Detection in structural Health Monitoring using hybrid convolution neural network and recurrent neural network. Frattura ed Integrità Strutturale. 2021;16(59):461–470. doi: 10.3221/IGF-ESIS.59.30
  • Seguini M, Djamel N, Djilali B, et al. Crack prediction in beam-like structure using ANN based on frequency analysis. Frattura ed Integrità Strutturale. 2021;16(59):18–34. doi: 10.3221/IGF-ESIS.59.02
  • Zhang J, Zhao J, Rong Q, et al. Machine learning guided prediction of mechanical properties of TPMS structures based on finite element simulation for biomedical titanium. Mater Technol. 2022;37(1):1–8. doi: 10.1080/10667857.2021.1999558
  • Gong N, Yong Wang RDKM, Liu H. Machine learning guided understanding of microstructural entropy decay in bimodal grain-size distributed alloys with combination of high-strength and high-ductility. Materialia. 2022;26:101630. doi: 10.1016/j.mtla.2022.101630
  • Li XC, Zhao JX, Cong JH, et al. Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior. J Mater Sci Technol. 2021;84:49–58. doi: 10.1016/j.jmst.2020.12.024
  • Ravindranadh Bobbili BR, Madhu V. Development of machine learning based models for design of high entropy alloys. Mater Technol. 2022;37(13):2580–2587. doi: 10.1080/10667857.2022.2046930
  • Zhang Y, Xiaojie X. Machine learning the central magnetic flux density of superconducting solenoids. Mater Technol. 2022;37(4):272–279. doi: 10.1080/10667857.2020.1830567
  • Babu NV, Venkateshwaran N, Rajini N, et al. Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique. Mater Technol. 2022;37(9):1008–1025. doi: 10.1080/10667857.2021.1915056
  • Haihua W, Liu L, Cai Y, et al. A novel gradient graphene composite with broadband microwave absorption fabricated by fused deposition modelling. Mater Technol. 2022;37(4):280–287. doi: 10.1080/10667857.2020.1837487
  • Naveed N. Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM). Mater Technol. 2021;36(5):317–330. doi: 10.1080/10667857.2020.1758475
  • Jatti VS, Sapre MS, Jatti AV, et al. Mechanical properties of 3D-printed components using Fused Deposition Modeling: optimization using the desirability approach and machine learning regressor. Appl Syst Innov. 2022;5(6):112. https://www.mdpi.com/2571-5577/5/6/112
  • Mishra A, Jatti VS. Neurosymbolic artificial intelligence (NSAI) based algorithm for predicting the impact strength of additive manufactured polylactic acid (PLA) specimens. Eng Res Exp. 2023;5(3):035017. doi: 10.1088/2631-8695/ace610
  • Mishra A, Jatti VS. Novel coupled genetic algorithm–machine learning approach for predicting surface roughness in Fused Deposition Modeling of polylactic acid specimens. J Materi Eng Perform. 2023. doi: 10.1007/s11665-023-08379-2
  • Mishra A, Jatti VS, Sefene EM, et al. Explainable Artificial intelligence (XAI) and supervised machine learning-based algorithms for prediction of surface roughness of additively manufactured polylactic acid (PLA) specimens. Appl Mech. 2023;4(2):668–698. doi: 10.3390/applmech4020034