Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
439
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Faster photoswitching and amplified NBE emission from mg doped sol-gel derived ZnO thin films

ORCID Icon, &
Article: 2296182 | Received 22 Nov 2023, Accepted 13 Dec 2023, Published online: 07 Jan 2024

References

  • Shan FK, Kim BI, Liu GX, et al. Blueshift of near band edge emission in mg doped ZnO thin films and aging. J Appl Phys. 2004;95(9):4772. doi: 10.1063/1.1690091
  • Zhang X-M, Ming-Yen L, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-Nanowire array grown on p-GaN thin film. Adv Mater. 2009;21(27):2767–11. doi: 10.1002/adma.200802686
  • Ali GM, Chakrabarti P. ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors. J Phys D Appl Phys. 2010;43(41):415103. doi: 10.1088/0022-3727/43/41/415103
  • Kumar N, Srivastava A. Faster photoresponse, enhanced photosensitivity and photoluminescence in nanocrystalline ZnO films suitably doped by cd. J Alloys Compd. 2017;706:438–446. doi: 10.1016/j.jallcom.2017.02.244
  • Moret M, Abou A, Chaaya MB, et al. Atomic Layer deposition of zinc oxide for solar cell applications. Superlattices Microstruct. 2014;75:477–484. doi: 10.1016/j.spmi.2014.07.050
  • Bie Y-Q, Liao Z-M, Wang P-W, et al. Single ZnO Nanowire/p-type GaN heterojunctions for photovoltaic devices and UV light-emitting diodes. Adv Mater. 2010;22(38):4284–4287. doi: 10.1002/adma.201000985
  • Xue L, Xaing L, Peng-Ting L. Mg doping reduced full width at half maximum of the near-band-edge emission in mg doped ZnO films. Chin Phys B. 2010;19(2):027202. doi: 10.1088/1674-1056/19/2/027202
  • Ohtomo A, Tamura K, Kawasaki M, et al. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl Phys Lett. 2000;77(14):2204. doi: 10.1063/1.1315340
  • Jin Y, Zhang B, Shuming Y, et al. Room temperature UV emission of MgxZn1−xO films. Solid State Commun. 2001;119(6):409. doi: 10.1016/S0038-1098(01)00244-7
  • Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films. Appl Phys Lett. 2001;78(9):1237. doi: 10.1063/1.1350632
  • Gruber T, Kirchner C, Kling R, et al. Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy. Appl Phys Lett. 2003;83(16):3290. doi: 10.1063/1.1620674
  • Gruber T, Kirchner C, Kling R, et al. ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Appl Phys Lett. 2004;84(26):5359. doi: 10.1063/1.1767273
  • Janotti A, Van de Walle CG. Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys. 2009;72(12):126501. doi: 10.1088/0034-4885/72/12/126501
  • Yadav HK, Gupta V. A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques. J Appl Phys. 2012;111(10):102809. doi: 10.1063/1.4714715
  • Li QH, Gao T, Wang YG, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl Phys Lett. 2005;86(12):123117. doi: 10.1063/1.1883711
  • Sharma P, Mansingh A, Sreenivas K. Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering. Appl Phys Lett. 2002;80(4):553–555. doi: 10.1063/1.1445480
  • Shewale PS, Yu YS. Structural, surface morphological and UV photodetection properties of pulsed laser deposited mg-doped ZnO nanorods: effect of growth time. J Alloys Compd. 2016;654:79–86. doi: 10.1016/j.jallcom.2015.09.048
  • Das A, Roy PG, Dutta A, et al. Mg and al co-doping of ZnO thin films: effect on ultraviolet photoconductivity. Sci Semicond Process. 2016;54:36–41. doi: 10.1016/j.mssp.2016.06.018
  • Jiang DY, Zhang JY, Liu KW, et al. A high-speed photoconductive UV detector based on an mg 0.4 zn 0.6 O thin film. Sci Technol. 2007;22(7):687–690. doi: 10.1088/0268-1242/22/7/001
  • Young S-L, Kao M-C, Chen H-Z, et al. Mg doping effect on the microstructural and optical properties of ZnO nanocrystalline films. J Nanomater. 2015;2015:1–5. doi: 10.1155/2015/627650
  • Kumar N, Srivastava A. Green photoluminescence and photoconductivity from screen-printed mg doped ZnO films. J Alloys Compd. 2018;735:312–318. doi: 10.1016/j.jallcom.2017.11.024
  • Sharma A, Khangarot RK, Chattopadhyay S, et al. Band gap reduction and improved ferromagnetic ordering via bound magnetic polarons in Zn(Al, Ce)O nanoparticles. Mater Technol. 2023;38(1):2151114. doi: 10.1080/10667857.2022.2151114
  • Kumawat A, Chattopadhyay S, Misra KP. Significant impact of co-doping eu-doped ZnO nanoparticles with Li on structural–optical properties relationship. Mater Technol. 2023;38(1):2253646. doi: 10.1080/10667857.2023.2253646
  • Srivastava A, Kumar N, Khare S. Enhancement in UV emission and band gap by fe doping in ZnO thin films. Opto-Electronics Review. 2014;22(1):68–76. doi: 10.2478/s11772-014-0179-x
  • Srivastava A, Shukla RK, Misra KP. Photoluminescence from screen printed ZnO based nanocrystalline films. Cryst Res Technol. 2011;46(9):949–955. doi: 10.1002/crat.201100155
  • Kumawat A, Misra KP, Chattopadhyay S. Band Gap Engineering and relationship with luminescence in rare-earth elements doped ZnO: an overview. Mater Technol. 2022;37(11):1595–1610. doi: 10.1080/10667857.2022.2082351
  • Sharma A, Kumawat A, Chattopadhyay S, et al. Low temperature induced red-shift in violet-blue emission from Zn(Al, Ag)O nanoparticles. Mater Technol. 2022;37(11):1629–1638. doi: 10.1080/10667857.2021.1967550
  • Srivastava A, Kumar N, Misra KP, et al. Enhancement of band gap of ZnO nanocrystalline films at a faster rate using sr dopant. Electron Mater Lett. 2014;10(4):703–711. doi: 10.1007/s13391-014-3131-9
  • Sharma A, Khangarot RK, Kumar N, et al. Rise in UV and blue emission and reduction of surface roughness due to the presence of ag and al in monocrystalline ZnO films grown by sol-gel spin coating. Mater Technol. 2021;36(9):541–551. doi: 10.1080/10667857.2020.1776029
  • Srivastava A, Kumar N, Misra KP, et al. Blue-light luminescence enhancement and increased band gap from calcium-doped zinc oxide nanoparticle films. Mater Sci Semicond Process. 2014;26:259–266. doi: 10.1016/j.mssp.2014.05.001
  • Feng J, Tong SY, Thian ES, et al. Nanostructuring of biomaterials and reducing implant related infections via incorporation of silver and copper as antimicrobial elements: an overview. Mater Technol. 2022;37(9):867–879. doi: 10.1080/10667857.2022.2080347
  • Huang K, Tang Z, Zhang L, et al. Preparation and characterization of mg-doped ZnO thin films by sol–gel method. Appl Surface Sci. 2012;258(8):3710–3713. doi: 10.1016/j.apsusc.2011.12.011
  • Ding R, Xu C, Gu B, et al. Effects of mg incorporation on microstructure and optical properties of ZnO thin films prepared by sol-gel method. J Mater Sci Technol. 2010;26(7):601–604. doi: 10.1016/S1005-0302(10)60092-8
  • Kim TH, Park JJ, Nam SH, et al. Fabrication of mg-doped ZnO thin films by laser ablation of Zn: Mg target. Applied Surface Science. 2009;255(10):5264–5266. doi: 10.1016/j.apsusc.2008.07.105
  • Fang D, Li C, Wang N, et al. Structural and optical properties of mg-doped ZnO thin films prepared by a modified pechini method. Cryst Res Technol. 2013;48(5):265–272. doi: 10.1002/crat.201200437
  • Bae J-S, Won M-S, Yoon J-H, et al. Preparation and characterization of Ce-doped ZnO nanofibers by an electrospinning method. JAST. 2011;2(1):1–6. doi: 10.5355/JAST.2011.1
  • Fatima A, Devadason S, Pure J. Growth and haracterization of cerium oped zinc oxide nanocrystalline thin film. Appl & Ind Phy. 2011;2:115–120.
  • Fujihara S, Ogawa Y, Kasai A. Tunable visible photoluminescence from ZnO thin films through mg-doping and annealing. Chem Mater. 2004;16(15):2965–2968. doi: 10.1021/cm049599i
  • Dhara S, Giri PK. ZnO/anthracene based inorganic/organic nanowire heterostructure: photoresponse and photoluminescence studies. J Appl Phys. 2012;111(4):044320. doi: 10.1063/1.3687936
  • Ta Y, Takahashi Y, Kanamori M, et al. Photoconductivity of Ultrathin Zinc Oxide Films. Jpn J Appl Phys Part. 1994;1(33):6611–6615. doi: 10.1143/JJAP.33.6611
  • Hassan NK, Hashim MR, Allam NK. Low power UV photodetection characteristics of cross-linked ZnO nanorods/nanotetrapods grown on silicon chip. Sens Actuators A. 2013;192:124–129. doi: 10.1016/j.sna.2012.12.040
  • Pandey N, Srivastava RK, Prakash SG. Study of dark conductivity and Photoconductivity in dysprosium doped zinc oxide synthesized by heat treatment method. Natl Acad Sci Lett. 2013;36(5):521–526. doi: 10.1007/s40009-013-0164-9
  • Mackenzie JD, Ulrich DR. Sol-gel optics, present status and future trends. Proc Of SPIE Conf On Sol-Gel Optics. 1999;1328:2–13.