Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
511
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of drugs loaded UiO-66 nanoparticles loaded core-shell nanofibers: investigation of antiproliferative activity and apoptosis induction in lung cancer cells

, , , &
Article: 2304437 | Received 30 Oct 2023, Accepted 08 Jan 2024, Published online: 21 Jan 2024

References

  • Wang Z, Sun Q, Liu B, et al. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev. 2021;439:213945. doi: 10.1016/j.ccr.2021.213945
  • Wang D, Zhou J, Chen R, et al. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials. 2016;100:27–11. doi: 10.1016/j.biomaterials.2016.05.027
  • Ibrahim M, Sabouni R, Husseini GA. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr Med Chem. 2017;24(2):193–214. doi: 10.2174/0929867323666160926151216
  • Fu L-Q, Chen X-Y, Cai M-H, et al. Surface engineered metal-organic frameworks (MOFs) based novel hybrid systems for effective wound healing: a review of recent developments. Front Bioeng Biotechnol. 2020;8:576348. doi: 10.3389/fbioe.2020.576348
  • Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr. 2017;5:96. doi: 10.3389/fped.2017.00096
  • Guo X, Chen B, Wu X, et al. Utilization of cinnamaldehyde and zinc oxide nanoparticles in a carboxymethylcellulose-based composite coating to improve the postharvest quality of cherry tomatoes. Int j biol macromol. 2020;160:175–182. doi: 10.1016/j.ijbiomac.2020.05.201
  • Saeb MR, Rabiee N, Mozafari M, et al. Metal–organic frameworks (MOFs) for cancer therapy. Materials. 2021;14(23):7277. doi: 10.3390/ma14237277
  • Abdelhamid HN. Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: a review. Curr Med Chem. 2021;28(34):7023–7075. doi: 10.2174/0929867328666210608143703
  • Sandomierski M, Jakubowski M, Ratajczak M, et al. Zeolitic imidazolate framework‑8 (ZIF-8) modified titanium alloy for controlled release of drugs for osteoporosis. Sci Rep. 2022;12(1):9103. doi: 10.1038/s41598-022-13187-0
  • Xie H, Liu X, Huang Z, et al. Nanoscale zeolitic imidazolate framework (ZIF)–8 in cancer theranostics: current challenges and prospects. Current Challen Prosp Can. 2022;14(16):3935. doi: 10.3390/cancers14163935
  • Li R, Cheng Z, Wen R, et al. Novel SA@Ca2+/RCSPs core–shell structure nanofibers by electrospinning for wound dressings. RSC Adv. 2018;8(28):15558–15566. doi: 10.1039/C8RA00784E
  • Zhang Y, Li J, Li W, et al. Synthesis of one-dimensional mesoporous Ag nanoparticles-modified TiO2 nanofibers by electrospinning for lithium ion batteries. Materials. 2019;12(16):12. doi: 10.3390/ma12162630
  • Deng L, Zhang X, Li Y, et al. Characterization of gelatin/zein nanofibers by hybrid electrospinning. Food Hydrocolloids. 2018;75:72–80. doi: 10.1016/j.foodhyd.2017.09.011
  • Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: methods. Chem Rev. 2019;119(8):5298–5415. doi: 10.1021/acs.chemrev.8b00593
  • Yang H, Lan X, Xiong Y. In situ growth of zeolitic imidazolate framework-l in macroporous PVA/CMC/PEG composite hydrogels with synergistic antibacterial and rapid hemostatic functions for wound dressing. Gels. 2022;8(5):279. doi: 10.3390/gels8050279
  • Meng H, Zhao Y, Dong J, et al. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer Model in mice. ACS Nano. 2013;7(11):10048–10065. doi: 10.1021/nn404083m
  • Mottaghitalab F, Kiani M, Farokhi M, et al. Targeted delivery system based on gemcitabine-loaded silk fibroin nanoparticles for lung cancer therapy. ACS Appl Mater Interfaces. 2017;9(37):31600–31611. doi: 10.1021/acsami.7b10408
  • Plunkett W, Huang P, Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs. 1995;6(Supplement 6):7–13. doi: 10.1097/00001813-199512006-00002
  • Jiang Y, Dai H, Li Y, et al. PARP inhibitors synergize with gemcitabine by potentiating DNA damage in non‐small‐cell lung cancer. Intl J Cancer. 2019;144(5):1092–1103. doi: 10.1002/ijc.31770
  • Konstantinopoulos PA, Cheng S-C, Wahner Hendrickson AE, et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(7):957–968. doi: 10.1016/S1470-2045(20)30180-7
  • Kang C, Yuan X, Li F, et al. Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res Part A. 2009;93A(2):585–594. doi: 10.1002/jbm.a.32525
  • Oseledchyk A, Andreou C, Wall MA, et al. Folate-targeted surface-enhanced resonance raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano. 2017;11(2):1488–1497. doi: 10.1021/acsnano.6b06796
  • Yang C, Zhang J, Liao M, et al. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discovery Today. 2021;26:817–825. doi: 10.1016/j.drudis.2020.12.006
  • Afzalipour R, Khoei S, Khoee S, et al. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater Sci Eng. 2019;5(11):6000–6011. doi: 10.1021/acsbiomaterials.9b00856
  • Luong D, Sau S, Kesharwani P, et al. Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules. 2017;18(4):1197–1209. doi: 10.1021/acs.biomac.6b01885
  • Zheng M, Zhao P, Luo Z, et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl Mater Inter. 2014;6(9):6709–6716. doi: 10.1021/am5004393
  • Liu Y, Chen S, Sun J, et al. Folate-targeted and Oxygen/Indocyanine green-loaded lipid nanoparticles for dual-mode imaging and photo-sonodynamic/photothermal therapy of ovarian cancer in vitro and in vivo. Mol Pharm. 2019;16(10):4104–4120. doi: 10.1021/acs.molpharmaceut.9b00339
  • Farran B, Montenegro RC, Kasa P, et al. Folate-conjugated nanovehicles: strategies for cancer therapy. Mater Sci Eng C. 2020;107:110341. doi: 10.1016/j.msec.2019.110341
  • Dorairaj DP, Haribabu J, Dharmasivam M, et al. Ru(II)-p-cymene complexes of furoylthiourea ligands for anticancer applications against breast cancer cells. Inorg Chem. 2023;62(30):11761–11774. doi: 10.1021/acs.inorgchem.3c00757
  • Mohamed Subarkhan MK, Ren L, Xie B, et al. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. 2019;179. doi: 10.1016/j.ejmech.2019.06.061
  • Pilliadugula R, Haribabu J, Mohamed Subarkhan MK, et al. Effect of morphology and (sn, cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J Sci. 2021;6(3):351–363. doi: 10.1016/j.jsamd.2021.03.003
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 2021;50(44):16311–16325. doi: 10.1039/D1DT02611A
  • Florek J, Caillard R, Kleitz F. Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale. 2017;9(40):15252–15277. doi: 10.1039/C7NR05762H
  • Hu Y, Yu D, Zhang X. 9-amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochem. 100(2021):140–148. doi: 10.1016/j.procbio.2020.09.021
  • Bahamin N, Ahmadian S, Rafieian-Kopaei M, et al. A comparative study on anticancer effects of the alhagi maurorum and amygdalus haussknechtii extracts alone and in combination with docetaxel on 4T1 breast cancer cells, evidence-based complementary and alternative medicine. Evid Based Complement Alternat Med. 2021;2021(2021):1–11. doi: 10.1155/2021/5517944
  • Yan E, Fan Y, Sun Z, et al. Biocompatible core–shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Mater Sci Eng C. 2014;41:217–223. doi: 10.1016/j.msec.2014.04.053
  • Yan E, Jiang J, Ren X, et al. Polycaprolactone/polyvinyl alcohol core-shell nanofibers as a pH-responsive drug carrier for the potential application in chemotherapy against colon cancer. Mater Lett. 2021;291:129516. doi: 10.1016/j.matlet.2021.129516
  • Yan E, Jiang J, Yang X, et al. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Delivery Sci Technol. 2020;55:101455. doi: 10.1016/j.jddst.2019.101455
  • Hasanbegloo K, Banihashem S, Dizaji BF, et al. Paclitaxel-loaded liposome-incorporated chitosan (core)/poly (ε-caprolactone)/chitosan (shell) nanofibers for the treatment of breast cancer. Int j biol macromol. 2023;230:123380. doi: 10.1016/j.ijbiomac.2023.123380
  • Farboudi A, Mahboobnia K, Chogan F, et al. UiO-66 metal organic framework nanoparticles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core-shell nanofibers for controlled release of doxorubicin and folic acid. Int j biol macromol. 2020;150:178–188. doi: 10.1016/j.ijbiomac.2020.02.067
  • Talimi R, Shahsavari Z, Dadashzadeh S, et al. Sirolimus-exuding core-shell nanofibers as an implantable carrier for breast cancer therapy: preparation, characterization, in vitro cell studies, and in vivo anti-tumor activity. Drug Dev Ind Pharm. 2023;48(12):694–707. doi: 10.1080/03639045.2022.2161559
  • Nasari M, Semnani D, Hadjianfar M, et al. Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: an anticancer drug delivery system. J Mater Sci. 2020;55(23):10185–10201. doi: 10.1007/s10853-020-04784-3
  • Bahmani E, Dizaji BF, Talaei S, et al. Fabrication of poly(ϵ-caprolactone)/paclitaxel (core)/chitosan/zein/multi-walled carbon nanotubes/doxorubicin (shell) nanofibers against MCF -7 breast cancer. Polymers For Advanced Techs. 2023;34(2):789–799. doi: 10.1002/pat.5931
  • Kaviannasab E, Semnani D, Khorasani SN, et al. Core-shell nanofibers of poly (ε–caprolactone) and polyvinylpyrrolidone for drug delivery system. Mater Res Express. 2019;6(11):115015. doi: 10.1088/2053-1591/ab4387