Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
421
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In vivo biodegradation and biological properties of a Mg-Zn-Ca amorphous alloy for bone defect repair

, , , , ORCID Icon & ORCID Icon
Article: 2307846 | Received 28 Dec 2023, Accepted 16 Jan 2024, Published online: 31 Jan 2024

References

  • Migliorini F, La Padula G, Torsiello E, et al. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res. 2021;26(1):118. doi: 10.1186/s40001-021-00593-9
  • Baumhauer J, Pinzur MS, Donahue R, et al. Site selection and pain outcome after autologous bone graft harvest. Foot Ankle Int. 2014;35(2):104–19. doi: 10.1177/1071100713511434
  • Kim H, Kar AK, Kaja A, et al. More weighted cancellous bone can be harvested from the proximal tibia with less donor site pain than anterior iliac crest corticocancellous bone harvesting: retrospective review. J Orthop Surg Res. 2021;16:220. doi: 10.1186/s13018-021-02364-y
  • Sternheim A, Drexler M, Kuzyk PR, et al. Treatment of failed allograft prosthesis composites used for hip arthroplasty in the setting of severe proximal femoral bone defects. J Arthroplasty. 2014;29(5):1058–1062. doi: 10.1016/j.arth.2013.10.002
  • Niederauer GG, Lee DR, Sankaran S. Bone grafting in arthroscopy and sports medicine. Sports Med Arthrosc Rev. 2006;14(3):163–168. doi: 10.1097/00132585-200609000-00008
  • Rodham PL, Giannoudis VP, Kanakaris NK, et al. Biological aspects to enhance fracture healing. EFORT Open Rev. 2023;8(5):264–282. doi: 10.1530/EOR-23-0047
  • Yang C, Xu H, Wang Y, et al. Hot tearing analysis and process optimisation of the fire face of Al-Cu alloy cylinder head based on MAGMA numerical simulation. Mater Technol. 2023;38(1):2165245. doi: 10.1080/10667857.2023.2165245
  • Misra RDK . Enabling manufacturing of multi-axial forging-induced ultrafine-grained strong and ductile magnesium alloys: a perspective of process-structure-property paradigm. Mater Technol. 2023;38(1):2189769. doi: 10.1080/10667857.2023.2189769
  • Ning H, Li X, Meng L, et al. Effect of Ni and Mo on microstructure and mechanical properties of grey cast iron. Mater Technol. 2023;38(1):2172991. doi: 10.1080/10667857.2023.2172991
  • Misra RDK, Challa VSA. VSY injeti, phase reversion-induced nanostructured austenitic alloys: an overview. Mater Technol. 2022;37(7):437–449. doi: 10.1080/10667857.2022.2065621
  • Li Q, Zuo H, Feng J, et al. Strain rate and temperature sensitivity on the flow behaviour of a duplex stainless steel during hot deformation. Mater Technol. 2023;38:2166216. doi: 10.1080/10667857.2023.2166216
  • Niu G, Zurob HS, Misra RDK, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure. Acta Materialia. 2022;226:117642. doi: 10.1016/j.actamat.2022.117642
  • Guo L, Su X, Dai L, et al. Strain ageing embrittlement behaviour of X80 self-shielded flux-cored girth weld metal. Mater Technol. 2023;38(1):2164978. doi: 10.1080/10667857.2023.2164978
  • Wang L, Li J, Liu ZQ, et al. Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder. Mater Technol. 2023;38:2181680. doi: 10.1080/10667857.2023.2181680
  • Castro AGB, Polini A, Azami Z, et al. Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement. J Mech Behav Biom Mat. 2017;71:286–294. doi: 10.1016/j.jmbbm.2017.03.027
  • Chen J, Dong J, Fu H, et al. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect. J Mater Sci Technol. 2019;35(10):2254–2262. doi: 10.1016/j.jmst.2019.04.031
  • Misra RDK. Strong and ductile texture-free ultrafine-grained magnesium alloy via three-axial forging. Mater Lett. 2023;331:133443. doi: 10.1016/j.matlet.2022.133443
  • Weaver MR, Maldonado AJ, Banuelos JL, et al. On precipitation hardening behaviour in a triaxial forged Mg-2Zn-2Gd alloy and relationship to mechanical properties. Mater Technol. 2023;38:2215038. doi: 10.1080/10667857.2023.2215038
  • Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–1169. doi: 10.1038/nm.4162
  • Chen K, Xie X, Tang H, et al. In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys. Bioact Mater. 2020;5(2):275–285. doi: 10.1016/j.bioactmat.2020.02.014
  • Wang W, Wu H, Zan R, et al. Microstructure controls the corrosion behavior of a lean biodegradable Mg-2Zn alloy. Acta Biomater. 2020;107:349–361. doi: 10.1016/j.actbio.2020.02.040
  • Parande G, Manakari V, Prasadh S, et al. Strength retention, corrosion control and biocompatibility of Mg-zn-Si/HA nanocomposites. J Mech Behav Biomed Mater. 2020;103:103584. doi: 10.1016/j.jmbbm.2019.103584
  • Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–1018. doi: 10.1016/j.biomaterials.2005.07.037
  • Kraus T, Fischerauer SF, Hänzi AC, et al. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230–1238. doi: 10.1016/j.actbio.2011.11.008
  • Biały M, Hasiak M, Łaszcz A. Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses. J Funct Biomater. 2022;13(4):245. doi: 10.3390/jfb13040245
  • Zberg B, Uggowitzer PJ, Löffler JF. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887–891. doi: 10.1038/nmat2542
  • Gu X, Zheng Y, Zhong S, et al. Corrosion of, and cellular responses to Mg-zn-ca bulk metallic glasses. Biomaterials. 2010;31(6):1093–1103. doi: 10.1016/j.biomaterials.2009.11.015
  • Chen J, Zhu X, Etim IP, et al. Comparative study of the effects of MAO coating and Ca-P coating on the biodegradation and biocompatibility of Mg69Zn27Ca4metal glass. Mater Technol. 2022;37:21–27.
  • Yu X, Tan L. Effect of simulated body fluid environment on degradation performance of Mg66Zn30Ca4 amorphous alloy. Chin. J Nonferrous Met. 2023;33(02):531–539. doi: 10.11817/j.ysxb.1004.0609.2021-42508
  • ISO 10993-15:2019. Biological evaluation of medical devices Part 15: Identification and quantification of degradation products from metals and alloys. 2nd ed; 2019. p. 15.
  • ASTM G31-72(2004). standard practice for laboratory immersion corrosion testing of metals. Vol. 03.02. Phila-delphia, PA, USA: Annual Book of ASTM Standards., American Society for Testing and Materials; 2004. p. 8. doi: 10.1520/G0031-72R04
  • Martinez Sanchez AH, Luthringer BJ, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13:16–31. doi: 10.1016/j.actbio.2014.11.048
  • Zhang Z, Jia B, Yang H, et al. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: in vitro and in vivo studies. Bioact Mater. 2021;6(11):3999–4013. doi: 10.1016/j.bioactmat.2021.03.045
  • Zheng ZW, Chen YH, Wu DY, et al. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 2018;8(19):5482–5500. doi: 10.7150/thno.28315
  • Lee J, Byun H, Madhurakkat Perikamana SK, et al. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8(4):e1801106. doi: 10.1002/adhm.201801106
  • Lin Z, Shen D, Zhou W, et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact Mater. 2021;6(8):2315–2330. doi: 10.1016/j.bioactmat.2021.01.018
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi: 10.1016/j.immuni.2014.06.008
  • Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–89. doi: 10.1016/j.biomaterials.2017.12.025
  • Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194–207. doi: 10.1016/j.biomaterials.2014.10.017
  • Asparuhova MB, Caballé-Serrano J, Buser D, et al. Bone-conditioned medium contributes to initiation and progression of osteogenesis by exhibiting synergistic TGF-β1/BMP-2 activity. Int J Oral Sci. 2018;10:20. doi: 10.1038/s41368-018-0021-2
  • Liang L, Song D, Wu K, et al. Sequential activation of M1 and M2 phenotypes in macrophages by mg degradation from ti-mg alloy for enhanced osteogenesis. Biomater Res. 2022;26(1):17. doi: 10.1186/s40824-022-00262-w
  • Costantino MD, Schuster A, Helmholz H, et al. Inflammatory response to magnesium-based biodegradable implant materials. Acta Biomater. 2020;101:598–608. doi: 10.1016/j.actbio.2019.10.014
  • Bessa-Gonçalves M, Silva AM, Brás JP, et al. Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomater. 2020;114:471–484. doi: 10.1016/j.actbio.2020.07.028
  • Huang Y, Wu C, Zhang X, et al. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomaterialia. 2018;66:81–92. doi: 10.1016/j.actbio.2017.08.044
  • Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–1734. doi: 10.1016/j.biomaterials.2005.10.003
  • Zhao DW, Du CM, Zuo KQ, et al. Calcium–zinc phosphate chemical conversion coating facilitates the osteointegration of biodegradable zinc alloy implants by orchestrating macrophage phenotype. Adv Healthcare Materials. 2023;12(9):e2202537. doi: 10.1002/adhm.202202537
  • Zhang X, Chen Q, Mao X. Magnesium Enhances Osteogenesis of BMSCs by Tuning Osteoimmunomodulation. Biomed Res Int. 2019;2019:7908205. doi: 10.1155/2019/7908205
  • Hojyo S, Fukada T. Roles of zinc signaling in the immune system. J Immunol Res. 2016;2016:6762343. doi: 10.1155/2016/6762343