Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
278
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electrospun borneol/PVP antibacterial coating for postoperative management of keratoprosthesis implantation

, , , &
Article: 2309596 | Received 05 Dec 2023, Accepted 18 Jan 2024, Published online: 01 Feb 2024

References

  • Chen M, Ng SM, Akpek EK, et al. Artificial corneas versus donor corneas for repeat corneal transplants. Cochrane Database Syst Rev. 2020;2020(5):20. doi: 10.1002/14651858.CD009561.pub3
  • Khan B, Dudenhoefer EJ, Dohlman CH. Keratoprosthesis: an update. Curr Opin Ophthalmol. 2001;12(4):282–9. doi: 10.1097/00055735-200108000-00007
  • Khan BF, Harissi-Dagher M, Khan DM, et al. Advances in Boston keratoprosthesis: enhancing retention and prevention of infection and inflammation. Int Ophthalmol Clin. 2007;47(2):61–71. doi: 10.1097/IIO.0b013e318036bd8b
  • Prabhasawat P, Chotikavanich S, Ngowyutagon P, et al. Long-term outcomes of Boston type I keratoprosthesis, and efficacy of amphotericin B and povidone-iodine in infection prophylaxis. Am J Ophthalmol. 2021;232:40–48. doi: 10.1016/j.ajo.2021.05.022
  • Dohlman C. The boston keratoprosthesis—the first 50 years: some reminiscences. Annu Rev Vis Sci. 2022;8(1):1–32. doi: 10.1146/annurev-vision-100820-021253
  • Li W, Thian ES, Wang M, et al. Surface design for antibacterial materials: from fundamentals to advanced strategies. Adv Sci. 2021;8(19):2100368. doi: 10.1002/advs.202100368
  • Jing W, Hussain SA, Reddy Gangireddygari VS, et al. Biocompatibility and antibacterial activity studies of gellan gum and alginate thin film encapsulating curcumin as a wound skin care dressing. Mater Technol. 2023;38(1):2282321. doi: 10.1080/10667857.2023.2282321
  • Tharchanaa SB, Anupriyanka T, Shanmugavelayutham G. Ecofriendly surface modification of cotton fabric to enhance the adhesion of CuO nanoparticles for antibacterial activity. Mater Technol. 2022;37(14):3222–3230. doi: 10.1080/10667857.2022.2141169
  • Pal S, Mondal S, Maity J. In situ generation and deposition of ZnO nanoparticles on cotton surface to impart hydrophobicity: investigation of antibacterial activity. Mater Technol. 2018;33(8):555–562. doi: 10.1080/10667857.2018.1483306
  • Humayun A, Luo Y, Elumalai A, et al. 3D printed antimicrobial PLA constructs functionalised with zinc- coated halloysite nanotubes-ag-chitosan oligosaccharide lactate. Mater Technol. 2020;37(1):1–8. doi: 10.1080/10667857.2020.1806188
  • Chen X, Chen Y, Lv S, et al. New type of borneol-based fluorine-free superhydrophobic antibacterial polymeric coating. Des Monomers Polym. 2021;24(1):147–157. doi: 10.1080/15685551.2021.1924959
  • Ustundag CR, Piskin MB. Investigation of electrospun poly (ε-caprolactone) fiber mats loaded with calophyllum inophyllum essential oil for wound dressing applications: morphology, drug release and in vitro evaluation. Mater Technol. 2023;38(1):2223018. doi: 10.1080/10667857.2023.2223018
  • Ma R, Lu D, Wang J, et al. Comparison of pharmacological activity and safety of different stereochemical configurations of borneol: L-borneol, D-borneol, and synthetic borneol. Biomed Pharmacother. 2023;164:114668. doi: 10.1016/j.biopha.2023.114668
  • Kulkarni M, Sawant N, Kolapkar A, et al. Borneol: a promising monoterpenoid in enhancing drug delivery across various physiological barriers. AAPS Pharm Sci Tech. 2021;22(4):145. doi: 10.1208/s12249-021-01999-8
  • Cheng Q, Asha AB, Liu Y, et al. Antifouling and antibacterial Polymer-Coated Surfaces Based on the combined effect of zwitterions and the natural borneol. ACS Appl Mater Inter. 2021;13(7):9006–9014. doi: 10.1021/acsami.0c22658
  • Xin Y, Zhao H, Xu J, et al. Borneol-modified chitosan: Antimicrobial adhesion properties and application in skin flora protection. Carbohydr Polym. 2020;228:115378. doi: 10.1016/j.carbpol.2019.115378
  • Wu JH, Wang C, Mu C, et al. A waterborne polyurethane coating functionalized by isobornyl with enhanced antibacterial adhesion and hydrophobic property. Eur Polym J. 2018;108:498–506. doi: 10.1016/j.eurpolymj.2018.09.034
  • Lv CL, Li L, Jiao Z, et al. Improved hemostatic effects by Fe3+ modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioact Mater. 2021;6(8):2346–2359. doi: 10.1016/j.bioactmat.2021.01.002
  • Kachwal V, Tan JC. Stimuli-responsive electrospun fluorescent fibers augmented with Aggregation-Induced Emission (AIE) for smart applications. Adv Sci. 2023;10(1):29. doi: 10.1002/advs.202204848
  • Xi K, Gu Y, Tang J, et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat Commun. 2020;11(1):18. doi: 10.1038/s41467-020-18265-3
  • Song G, Cheong JY, Kim C, et al. Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution. Nat Commun. 2019;10(1):11. doi: 10.1038/s41467-019-10305-x
  • Zhang ZA, Xia Z, Huang J, et al. Uneven phosphoric acid interfaces with enhanced electrochemical performance for high-temperature polymer electrolyte fuel cells. Sci Adv. 2023;9(4):10. doi: 10.1126/sciadv.ade1194
  • Yu QH, Yuan Y, Wen J, et al. A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater. Adv Sci. 2019;6(13):10. doi: 10.1002/advs.201900002
  • Li WL, Hua G, Cai J, et al. Multi-stimulus responsive multilayer coating for treatment of device-associated infections. J Func Biomater. 2022;13(1):17. doi: 10.3390/jfb13010024
  • Li WL, Chen H, Cai J, et al. Poly(pentahydropyrimidine)-based hybrid hydrogel with synergistic antibacterial and pro-angiogenic ability for the therapy of diabetic foot ulcers. Adv Funct Mater. 2023;33(49):15. doi: 10.1002/adfm.202303147
  • Li WL, Cai J, Zhou W, et al. Poly(aspartic acid)-based self-healing hydrogel with precise antibacterial ability for rapid infected-wound repairing. colloids and surfaces B-Biointerfaces. Colloids Surf B Biointerfaces. 2023;221:9. doi: 10.1016/j.colsurfb.2022.112982