Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
500
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis and optical characterization of selenium nanoparticles synthesized using Clitoria ternatea and Zingiber officinale: in vitro biomedical evaluation of antioxidant potential and antibacterial activity against caries-causing microbes

, , , , , , , , & ORCID Icon show all
Article: 2318062 | Received 12 Aug 2023, Accepted 08 Feb 2024, Published online: 11 Mar 2024

References

  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2019;12(7):908–14. doi: 10.1016/j.arabjc.2017.05.011
  • Nam NH, Luong NH. Nanoparticles: synthesis and applications. Mater Biomed Eng. 2019;211–240. doi: 10.1016/B978-0-08-102814-8.00008-1
  • Sampath S, Sunderam V. Facile green synthesis of zinc oxide nanoparticles using Artocarpus hirsutus seed extract: spectral characterization and in vitro evaluation of their potential antibacterial-anticancer activity. Biomass Conv Bioref. 2009. doi: 10.1007/s13399-023-04127-7
  • Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3:13. doi: 10.3389/fcimb.2013.00013
  • Dhanraj G, Rajeshkumar S. Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. J Nanomater. 2021;2021:e8115585. doi: 10.1155/2021/8115585
  • Zhang S-Y, Zhang J, Wang H-Y, et al. Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett. 2004;58(21):2590–2594. doi: 10.1016/j.matlet.2004.03.031
  • Dhanjal S, Cameotra SS. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact. 2010;9(1):52. doi: 10.1186/1475-2859-9-52
  • Menon S, Agarwal H, Rajeshkumar S, et al. Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. BioNanoSci. 2020;10(1):122–135. doi: 10.1007/s12668-019-00710-3
  • Kumar A, Prasad KS. Role of nano-selenium in health and environment. J Biotechnol. 2021;325:152–163. doi: 10.1016/j.jbiotec.2020.11.004
  • Gupta M, Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci [Internet]. 2017 [cited 2023 Aug 6];7. doi: 10.3389/fpls.2016.02074
  • Mukherjee PK, Kumar V, Kumar NS, et al. The Ayurvedic medicine clitoria ternatea—from traditional use to scientific assessment. J Ethnopharmacol. 2008;120(3):291–301.
  • Khan S, Pandotra P, Qazi AK, et al. Chapter 25 - medicinal and nutritional qualities of zingiber officinale. In: Watson R Preedy V, editors. Fruits, vegetables, and herbs [Internet]: Academic Press; 2016 [cited 2023 Aug 6]. p. 525–550. Available from: https://www.sciencedirect.com/science/article/pii/B9780128029725000251
  • Oguis GK, Gilding EK, Jackson MA, et al. Butterfly Pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front Plant Sci. 2019;10:645. doi: 10.3389/fpls.2019.00645
  • Mao Q-Q, Xu X-Y, Cao S-Y, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185. doi: 10.3390/foods8060185
  • Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand Sect B — Soil Plant Sci. 2019;69(6):546–556. doi: 10.1080/09064710.2019.1606930
  • Krithiga N, Rajalakshmi A, Jayachitra A. Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci. 2015;2015:e928204. doi: 10.1155/2015/928204
  • Mohammadi M, Shahisaraee SA, Tavajjohi A, et al. Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: characterisation, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole. IET Nanobiotechnol. 2019;13(2):114–119. doi: 10.1049/iet-nbt.2018.5146
  • Fatimah I, Hidayat H, Nugroho BH, et al. Ultrasound-assisted biosynthesis of silver and gold nanoparticles using Clitoria ternatea flower. South Afr J Chem Eng. 2020;34:97–106. doi: 10.1016/j.sajce.2020.06.007
  • Hu D, Gao T, Kong X, et al. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with direct blue 15 or direct orange 26. PLoS One. 2022;17(8):e0271408. doi: 10.1371/journal.pone.0271408
  • Mohammed SSS, Lawrance AV, Sampath S, et al. Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: spectral characterisation and its potential biological applications. Mater Technol. 2020:1–14.
  • Kalishwaralal K, Jeyabharathi S, Sundar K, et al. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress. J Trace Elem Med Biol. 2015;32:135–144. doi: 10.1016/j.jtemb.2015.06.010
  • Miglani S, Tani-Ishii N. Biosynthesized selenium nanoparticles: characterization, antimicrobial, and antibiofilm activity against Enterococcus faecalis. Peer J. 2021;9:e11653. doi: 10.7717/peerj.11653
  • Bauer AW, Kirby WM, Sherris JC, et al. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4_ts):493–496. doi: 10.1093/ajcp/45.4_ts.493
  • Rasooli I, Mirmostafa SA. Bacterial susceptibility to and chemical composition of essential oils from thymus kotschyanus and thymus persicus. J Agric Food Chem. 2003;51(8):2200–2205. doi: 10.1021/jf0261755
  • Foerster S, Unemo M, Hathaway LJ, et al. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 2016;16(1):216. doi: 10.1186/s12866-016-0838-9
  • Khater MS, Kulkarni GR, Khater SS, et al. Study to elucidate effect of titanium dioxide nanoparticles on bacterial membrane potential and membrane permeability. Mater Res Express. 2020;7(3):035005. doi: 10.1088/2053-1591/ab731a
  • Nithianantham K, Shyamala M, Chen Y, et al. Hepatoprotective potential of Clitoria ternatea leaf extract against paracetamol induced damage in mice. Molecules. 2011;16(12):10134–10145. doi: 10.3390/molecules161210134
  • Halliwell B, Gutteridge JM, Aruoma OI. The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 1987;165(1):215–219. doi: 10.1016/0003-2697(87)90222-3
  • Niksic H, Becic F, Koric E, et al. Cytotoxicity screening of thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep. 2021;11(1):13178. doi: 10.1038/s41598-021-92679-x
  • Debieux C, Dridge E, Hemsley C, et al. A bacterial process for selenium nanosphere assembly. Proceedings of the National Academy of Sciences of the United States of America. 2011;108 :13480–13485.
  • Saddat Ghaderi R, Adibian F, Sabouri Z, et al. Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity. Mater Technol. 2022;37(10):1289–1297. doi: 10.1080/10667857.2021.1935602
  • Thangapushbam V, Muthu K. Biosynthesis of silver nanoparticles using Martynia annua and its antimicrobial and cytotoxic activities. Mater Technol. 2022;37(14):3174–3183. doi: 10.1080/10667857.2022.2135475
  • Demssie Dejen K, Yilma Kibret D, Mengesha TH. Tadesu Hailu Mengesha, Eneyew Tilahun Bekele, Abebe Tedla, Temesgen Abera Bafa & Fikade Teketel Derib (2023) green synthesis and characterisation of silver nanoparticles from leaf and bark extract of Croton macrostachyus for antibacterial activity. Mater Technol. 2023;38(1):2164647. doi: 10.1080/10667857.2022.2164647
  • Sampath S, Bhushan M, Saxena V, et al. Green synthesis of Ag doped ZnO nanoparticles: study of their structural, optical, thermal and antibacterial properties. Mater Technol. 2022;37(13):2785–2794. doi: 10.1080/10667857.2022.2075307
  • Muthu K, Rajeswari S, Akilandaeaswari B, et al. Synthesis, characterisation and photocatalytic activity of silver nanoparticles stabilised by Punica granatum seeds extract. Mater Technol. 2021;36(11):684–693. doi: 10.1080/10667857.2020.1786786
  • Gul R, Saddique M, Ali Khan M, et al. Eco-friendly synthesis of silver nanoparticles and its biological evaluation using Tamarix aphylla leaves extract. Mater Technol. 2022;37(9):962–969. doi: 10.1080/10667857.2021.1908770
  • Gholami M, Azarbani F, Hadi F. Silver nanoparticles synthesised by using Iranian Mentha pulegium leaf extract as a non-cytotoxic antibacterial agent. Mater Technol. 2022;37(9):934–942. doi: 10.1080/10667857.2021.1906390
  • Acharya D, Satapathy S, Joel Thathapudi J, et al. Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Mater Technol. 2022;37(8):569–580. doi: 10.1080/10667857.2020.1863597
  • Boroumand S, Safari M, Shaabani E, et al. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express. 2019;6(8):0850d8. doi: 10.1088/2053-1591/ab2558
  • Souza LMDS, Dibo M, Sarmiento JJP, et al. Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Curr Res Green Sustain Chem. 2022;5:100303. doi: 10.1016/j.crgsc.2022.100303
  • Muthu S, Raju V, Gopal VB, et al. A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent. SN Appl Sci. 2019;1:1543. doi: 10.1007/s42452-019-1509-x
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956
  • Sahoo B, Leena Panigrahi L, Jena S, et al. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023;13(17):11406–11414. doi: 10.1039/D2RA07827A
  • Girase B, Depan D, Shah J, et al. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31(8):1759–1766. doi: 10.1016/j.msec.2011.08.007
  • Maulana I, Fasya D, Ginting B. Biosynthesis of Cu nanoparticles using Polyalthia longifolia roots extracts for antibacterial, antioxidant and cytotoxicity applications. Mater Technol. 2022;37(13):2517–2521. doi: 10.1080/10667857.2022.2044217
  • Skalickova S, Milosavljevic V, Cihalova K, et al. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001
  • Palomo-Siguero M, Gutiérrez AM, Pérez-Conde C, et al. Effect of selenite and selenium nanoparticles on lactic bacteria: a multi-analytical study. Microchem J. 2016;126:488–495. doi: 10.1016/j.microc.2016.01.010
  • Kieliszek M, Błażejak S, Gientka I, et al. Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol. 2015;99:5373–5382. doi: 10.1007/s00253-015-6650-x
  • Letavayová L, Vlasáková D, Spallholz JE, et al. Toxicity and mutagenicity of selenium compounds in Saccharomyces Cerevisiae. Mutat Res. 2008;638(1–2):1–10. doi: 10.1016/j.mrfmmm.2007.08.009