Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
209
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of oxygen-deficient mediated oxidative stress by zinc-doped vanadium oxides against Candida albicans

, , , , , , , , & show all
Article: 2318066 | Received 26 Jan 2024, Accepted 08 Feb 2024, Published online: 19 Feb 2024

References

  • Ye W, Chen Y, Zhang W, et al. Potential anti-Candida albicans mechanism of trichoderma acid from trichoderma spirale. Int J Mol Sci. 2023;24(6):5445. doi: 10.3390/ijms24065445
  • Masoumizadeh M, Madani M, Fatahian S, et al. Effect of Silver Nanoparticles (AgNPs) on Candida albicans, Candida dubliniensis and Candida guilliermondii. Curr Drug Ther. 2022;17(1):50–8. doi: 10.2174/1574885517666220221093456
  • Datta A, Das D, Nett JE, et al. Differential skin immune responses in mice intradermally infected with Candida auris and Candida albicans microbiology spectrum. Microbiol Spectr. 2023;11(6):e02215–23. doi: 10.1128/spectrum.02215-23
  • Ma D-Y, Wang Z-J, Chen Y-C, et al. Antifungal compounds of Chinese prickly ash against drug-resistant Candida albicans. Food Chemistry: X. 2022;15:100400. doi: 10.1016/j.fochx.2022.100400
  • Wang W, Zhao J, Zhang Z. Bacillus metabolites: compounds, identification and anti-Candida albicans mechanisms. Microbiol Res. 2022;13(4):972–984. doi: 10.3390/microbiolres13040070
  • Khan A, Moni SS, Ali M, et al. Antifungal activity of plant secondary metabolites on Candida albicans: an updated review. Curr Mol Pharmacol. 2023;16(1):15–42. doi: 10.2174/1874467215666220304143332
  • Hu P, Hu P, Vu TD, et al. Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chem Rev. 2023;123(8):4353–4415. doi: 10.1021/acs.chemrev.2c00546
  • Li P, Feng Y, Cheng D, et al. Self-template synthesis of mesoporous vanadium oxide nanospheres with intrinsic peroxidase-like activity and high antibacterial performance. J Colloid Interface Sci. 2022;625:435–445. doi: 10.1016/j.jcis.2022.06.049
  • Huang L, Niu Y, Xu G, et al. Generation of vanadium oxide quantum dots with distinct fluorescence and antibacterial activity via a room-temperature agitation strategy. ChemNanomat. 2018;4(10):1048–1053. doi: 10.1002/cnma.201800257
  • Menazea AA, El-Newehy MH, Thamer BM, et al. Preparation of antibacterial film-based biopolymer embedded with vanadium oxide nanoparticles using one-pot laser ablation. J Mol Struct. 2021;1225:129163. doi: 10.1016/j.molstruc.2020.129163
  • Sun H, Yang Z, Pu Y, et al. Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J Colloid Interface Sci. 2019;547:40–49. doi: 10.1016/j.jcis.2019.03.061
  • Liu L, Li S, Shi D, et al. Antibacterial activity of oxygen vacancy-mediated ROS production of V6O13 powder against Candida albicans. Inorganics. 2023;11(11):429. doi: 10.3390/inorganics11110429
  • Zheng F, Du W, Yang M, et al. Constructing ROS-Responsive supramolecular gel with innate antibacterial properties. Pharmaceutics. 2023;15(8):2161. doi: 10.3390/pharmaceutics15082161
  • Sá AS, de Lima IS, Honório LM, et al. ROS-mediated antibacterial response of ZnO and ZnO containing cerium under light. Chem Papers. 2022;76(11):7051–7060. doi: 10.1007/s11696-022-02390-y
  • Chandrasekaran K, Kim S, Choi M-J, et al. Surface engineering of tin dioxide through chitosan: band-gap tuning of spherical structure with oxygen vacancies for enhanced antibacterial therapeutic effects. J Ind Eng Chem. 2024;130:255–265. doi: 10.1016/j.jiec.2023.09.029
  • Hazarika R, Kalita B. Effect of oxygen vacancy defects on electronic and optical properties of MgO monolayers: first principles study. Mater Sci Eng B. 2022;286:115974. doi: 10.1016/j.mseb.2022.115974
  • Song H, Zhang M, Tong W. Single-Atom Nanozymes: fabrication, characterization, surface modification and applications of ROS scavenging and antibacterial. Molecules. 2022;27(17):5426. doi: 10.3390/molecules27175426
  • Paula CTB, Madeira AB, Pereira P, et al. ROS-degradable PEG-based wound dressing films with drug release and antibacterial properties. Eur Polym J. 2022;177:111447. doi: 10.1016/j.eurpolymj.2022.111447
  • Simo A, Drah M, Sibuyi NRS, et al. Hydrothermal synthesis of cobalt-doped vanadium oxides: antimicrobial activity study. Ceram Int. 2018;44(7):7716–7722. doi: 10.1016/j.ceramint.2018.01.198
  • Tousley ME, Wren AW, Towler MR, et al. Processing, characterization, and bactericidal activity of undoped and silver-doped vanadium oxides. Mater Chem Phys. 2012;137(2):596–603. doi: 10.1016/j.matchemphys.2012.10.008
  • Tahir T, Chaudhary K, Warsi MF, et al. Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens. Ceram Int. 2022;48(2):1969–1980. doi: 10.1016/j.ceramint.2021.09.282
  • Ragupathi C, Geetha VT, Narayanan S, et al. Study of Ce-doping effects on optical, morphological, magnetic, structural, and antibacterial properties of NiCr2O4 ceramics. Mater Sci Eng B. 2023;291:116358. doi: 10.1016/j.mseb.2023.116358
  • Liu Y, Zhang Y, Jiang H, et al. Synergistic engineering of oxygen-defect and heterojunction boosts Zn2+ (De)intercalation kinetics in vanadium oxide for high-performance zinc-ion batteries. Chem Eng J. 2022;435:134949. doi: 10.1016/j.cej.2022.134949
  • Singh J, Juneja S, Palsaniya S, et al. Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf B Biointerfaces. 2019;184:110541. doi: 10.1016/j.colsurfb.2019.110541
  • Zhang J, Shi R, Zhang Z, et al. Modulating the large vacancy types of CuS ultrathin nanosheets via defect engineering to improve the photocatalytic antibacterial performance. Appl Surf Sci. 2023;639:158269. doi: 10.1016/j.apsusc.2023.158269
  • Khalid A, Ahmad P, Alharthi AI, et al. Optical, and antibacterial efficacy of pure and zinc-doped copper oxide against pathogenic bacteria. Nanomaterials. 2021;11(2):451. doi: 10.3390/nano11020451
  • Roesner M, Zankovic S, Kovacs A, et al. Biocompatibility assessment of zinc alloys as a new potential material for bioabsorbable implants for osteosynthesis. Materials. 2023;16(15):5224. doi: 10.3390/ma16155224
  • Udhayakumar G, Muthukumarasamy N, Velauthapillai D, et al. Highly crystalline zinc incorporated hydroxyapatite nanorods’ synthesis, characterization, thermal, biocompatibility, and antibacterial study. Appl Phys A. 2017;123(10):655. doi: 10.1007/s00339-017-1248-z
  • Meng J, Zhang S, Liu X, et al. Facile synthesis of 3D urchin-like V6O13 microflowers as cathode materials for high-capacity and high-rate lithium-ion batteries. J Electroanal Chem. 2021;900. doi: 10.1016/j.jelechem.2021.115742
  • Horiuchi S, Saeki M, Matsui Y, et al. Transition of V6O13 to VO2 observed with a high-resolution electron-microscope. Acta Crystallogr A-Found Adv. 1975;31(5):660–664. doi: 10.1107/S0567739475001398
  • Hou X, Jiang S, Wang X, et al. Anti-biofouling photothermal film for solar steam generation based on oxygen defects rich and haloperoxidase mimic active V6O13. J Solid State Chem. 2022;315. doi: 10.1016/j.jssc.2022.123443
  • Goyal CP, Goyal D, Ganesh V, et al. Improvement of photocatalytic activity by zn doping in Cu2O. Phys Solid State. 2020;62(10):1796–1802. doi: 10.1134/S1063783420100091
  • Nguyen XS, Pham TD, Tran TTT, et al. Photo-oxidation efficient as (III) under visible light using microporous Zn doped-Fe3O4 sphere. Mater Technol. 2020;35(6):335–348. doi: 10.1080/10667857.2019.1682857