Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
233
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of reduction rate on microstructure and properties of laminated steel/aluminium low density composites prepared by hot pressing

, , , & ORCID Icon
Article: 2329856 | Received 22 Feb 2024, Accepted 08 Mar 2024, Published online: 14 Mar 2024

References

  • Czerwinski F. Current trends in automotive lightweighting strategies and materials. Materials. 2021;14(21):6631. doi: 10.3390/ma14216631
  • Heggemann T, Homberg W. Deep drawing of fiber metal laminates for automotive lightweight structures. Compos Struct. 2019;216:53–10. doi: 10.1016/j.compstruct.2019.02.047
  • Assari AH. Investigating the deformation behavior of hot-pressed Ti/Al/Ti laminated composite. J Manuf Processes. 2023;95:369–381. doi: 10.1016/j.jmapro.2023.04.026
  • Wei LL, Gao GH, Kim J, et al. Ultrahigh strength-high ductility 1 GPa low density austenitic steel with ordered precipitation strengthening phase and dynamic slip band refinement. Mater Sci Eng A. 2022;838:142829. doi: 10.1016/j.msea.2022.142829
  • Wei LL, Gao GH, Misra RDK. Phenomenological understanding of kappa-carbides on strengthening mechanism of low-density steel. Mater Sci Technol. 2023;39(12):1463–1474. doi: 10.1080/02670836.2023.2173430
  • Taali S, Toroghinejad MR, Saeidi N. Architectured lightweight steel composite: evaluation of the effect of geometrical parameters and annealing treatments on deformation behavior. J Mater Res Technol. 2021;15:5414–5427. doi: 10.1016/j.jmrt.2021.10.121
  • Song C, Wang H, Sun Z, et al. A new hot-rolled lightweight steel with ultra-high strength and good ductility designed by dislocation character and transformation strain. Scripta Materialia. 2022;212:114583. doi: 10.1016/j.scriptamat.2022.114583
  • Jawad DH, Hosseinzadeh A, Yapici GG. Effect of layer architecture on the mechanical behavior of accumulative roll bonded interstitial free steel/aluminum composites. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2021;818:9. doi: 10.1016/j.msea.2021.141387
  • Yang X, Weng H, Tang C-L. Interfacial Bonding Mechanism Ofaluminium and Steel Composites. Adv Compos Lett. 2018;27(2). 096369351802700. doi: 10.1177/096369351802700203
  • Qin L, Fan M, Guo X, et al. Plastic deformation behaviors of Ti-al laminated composite fabricated by vacuum hot-pressing. Vacuum. 2018;155:96–107. doi: 10.1016/j.vacuum.2018.05.021
  • Wang C, Jiang Y, Xie J, et al. Interface formation and bonding mechanism of embedded aluminum-steel composite sheet during cold roll bonding. Mater Sci Eng A. 2017;708:50–59. doi: 10.1016/j.msea.2017.09.111
  • Wang Y, Du J, Xiao H. Interfacial evolution and coordinated deformation mechanism of Ti/Al laminated metal composites prepared by diffusion bonding. J Mater Res Technol. 2023;27:4541–4551. doi: 10.1016/j.jmrt.2023.10.264
  • Deng Z, Xiao H, Yu C. Effect of intermetallic compounds distribution on bonding strength of steel–aluminum laminates. Mater Design. 2022;222:111106. doi: 10.1016/j.matdes.2022.111106
  • Mendes A, Timokhina I, Molotnikov A, et al. Role of shear in interface formation of aluminium-steel multilayered composite sheets. Mater Sci Eng A. 2017;705:142–152. doi: 10.1016/j.msea.2017.08.025
  • Dai G, Liu Y, Chen K, et al. Effect of cumulative deformation and interlayer mechanical properties on bonding strength of corrugated interface steel/aluminum composite plate. J Manuf Processes. 2023;103:78–89. doi: 10.1016/j.jmapro.2023.08.028
  • Que B, Chen L, Chen Y, et al. Fabrication of Al/Al-TiB2 laminate composites via hot press sintering process: an insight into the mechanical properties and fracture behavior. J Manuf Processes. 2024;109:53–64. doi: 10.1016/j.jmapro.2023.11.040
  • Wang Y, Liu Y, Pan H, et al. Phase formation and mechanical properties of iron-based intermetallic/steel laminate composites Adv Compos Hybrid Mater. 2021;5(3):2171–2183. doi: 10.1007/s42114-021-00264-7
  • Assari AH, Eghbali B. Interfacial layers evolution during annealing in ti-al multi-laminated composite processed using hot press and roll bonding. Met Mater Int. 2016;22(5):915–923. doi: 10.1007/s12540-016-5647-z
  • Assari AH, Eghbali B. Solid state diffusion bonding characteristics at the interfaces of Ti and Al layers. J Alloys Compd. 2019;773:50–58. doi: 10.1016/j.jallcom.2018.09.253
  • Slapakova M, Fekete R, Kralik K, et al. The influence of surface on direction of diffusion in Al-fe clad material. Mater Charact. 2022;190:112005. doi: 10.1016/j.matchar.2022.112005
  • Amanollahi A, Ebrahimzadeh I, Raeissi M, et al. Laminated steel/aluminum composites: improvement of mechanical properties by annealing treatment. Mater Today Commun. 2021;29:102866. doi: 10.1016/j.mtcomm.2021.102866
  • Springer H, Kostka A, Payton EJ, et al. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Materialia. 2011;59(4):1586–1600. doi: 10.1016/j.actamat.2010.11.023
  • Eizadjou M, Kazemitalachi A, Daneshmanesh H, et al. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process Compos Sci Technol. 2008;68(9):2003–2009. doi: 10.1016/j.compscitech.2008.02.029
  • Zhang X, Gao K, Wang Z, et al. Effect of intermetallic compounds on interfacial bonding of Al/Fe composites. Mater Lett. 2023;333:133597. doi: 10.1016/j.matlet.2022.133597
  • Gao BX, Zou DK, Guo YC, et al. Numerical simulation and experimental study on the effect of bond strength on the formability of steel/aluminum composite panels. Eng Fract Mech. 2022;276:108919. doi: 10.1016/j.engfracmech.2022.108919
  • Liu HS, Zhang B, Zhang GP. Enhanced toughness and fatigue strength of cold roll bonded Cu/Cu laminated composites with mechanical contrast. Scripta Materialia. 2011;65(10):891–894. doi: 10.1016/j.scriptamat.2011.08.001
  • Tamimi S, Gracio JJ, Lopes AB, et al. Asymmetric rolling of interstitial free steel sheets: microstructural evolution and mechanical properties. J Manuf Processes. 2018;31:583–592. doi: 10.1016/j.jmapro.2017.12.014
  • Koga N, Suzuki S, Jiang H, et al. Characterization of heterogeneous–nano structure in austenitic stainless steel: crystal orientations and hardness distribution. J Mater Sci. 2020;55(22):9299–9310. doi: 10.1007/s10853-020-04643-1
  • Watanabe C, Kobayashi S, Aoyagi Y, et al. Heterogeneous nano-structure and its evolution in heavily cold-rolled SUS316LN stainless steels. ISIJ Inter. 2020;60(3):582–589. doi: 10.2355/isijinternational.ISIJINT-2019-445