Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
374
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Innovative transdermal doxorubicin patches prepared using greenly synthesized iron oxide nanoparticles for breast cancer treatment

ORCID Icon, & ORCID Icon
Article: 2330278 | Received 02 Nov 2023, Accepted 09 Mar 2024, Published online: 29 Mar 2024

References

  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Can Res Ther. 2014;10(4):853–12. doi: 10.4103/0973-1482.139267
  • Petrilli R, Lopez RFV. Physical methods for topical skin drug delivery: concepts and applications. Braz J Pharm Sci. (2018);54(Special Issue). doi: 10.1590/S2175-97902018000001008
  • Raviraj V, Pham BTT, Kim BJ, et al. Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nanotechnol. (2021);12(1):6. doi: 10.1186/s12645-021-00079-7
  • Ahmed KS, Shan X, Mao J, et al. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C. 2019;99:1448–1458. doi: 10.1016/j.msec.2019.02.095
  • Jiang SP, He SN, Li YL, et al. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Int J Nanomedicine. 2013;8:3141–3150. doi: 10.2147/IJN.S47708 Epub 2013 Aug 19. PMID: 23990722; PMCID: PMC3753155.
  • Huang S, Liu H, Huang S, et al. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr Polym. 2020;246:116650. doi: 10.1016/j.carbpol.2020.116650
  • Liu J, Tagami T, Ozeki T. Fabrication of 3D-printed fish-gelatin-based polymer hydrogel patches for local delivery of pegylated liposomal doxorubicin. Mar Drugs. 2020;18(6):325. doi: 10.3390/md18060325
  • Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019 Jan 1;138:302–325. doi: 10.1016/j.addr.2019.01.005 Epub 2019 Jan 11. PMID: 30639256; PMCID: PMC7115878.
  • Mahmoud N, Hamed R, Khalil E. Colloidal stability and rheological properties of gold nanoparticle–loaded polymeric hydrogels: impact of nanoparticle’s shape, surface modification, and concentration. Colloid Polym Sci. 2020;298(8):989–999. doi: 10.1007/s00396-020-04659-8
  • El-Maddawy ZK, Abd El Naby WSH. Protective effects of zinc oxide nanoparticles against doxorubicin induced testicular toxicity and DNA damage in male rats. Toxicol Res (Camb). 2019 Jun 15;8(5):654–662. doi: 10.1039/c9tx00052f PMID: 31588342; PMCID: PMC6762007.
  • Abu-Huwaij R, Al-Assaf S, Mousli F, et al. Perceptive review on properties of iron oxide nanoparticles and their antimicrobial and anticancer activity. Sys Rev Pharm 2020;11(8):418–431
  • Vo TMT, Mondal S, Nguyen VT, et al. Rice starch coated iron oxide nanoparticles: a theranostic probe for photoacoustic imaging-guided photothermal cancer therapy. Int j biol macromol. 2021a;183:55–67. doi: 10.1016/J.IJBIOMAC.2021.04.053
  • Arias LS, Pessan JP, Vieira APM, et al. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018 Jun 9;7(2):46. doi: 10.3390/antibiotics7020046 PMID: 29890753; PMCID: PMC6023022.
  • Turrina C, Berensmeier S, Schwaminger SP. Bare iron oxide nanoparticles as drug delivery carrier for the short cationic peptide Lasioglossin. Pharmaceuticals (Basel). 2021 Apr 24;14(5):405. doi: 10.3390/ph14050405 PMID: 33923229; PMCID: PMC8146918.
  • Somvanshi S, Kharat P, Saraf T, et al. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innovations. 2021;25(3):169–174. doi: 10.1080/14328917.2020.1769350
  • Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Delivery. 2019;16(1):69–78. doi: 10.1080/17425247.2019.1554647 Taylor and Francis Ltd.
  • Phalake SS, Tofail S, Thorat N, et al. Functionalized manganese iron oxide nanoparticles: a dual potential magneto-chemotherapeutic cargo in a 3D breast cancer model. Nanoscale. (2023);15 (38):15686–15699. doi: 10.1039/D3NR02816J
  • Al-Shalabi R, Abu-Huwaij R, Hamed R, et al. The antimicrobial and the antiproliferative effect of human triple negative breast cancer cells using the greenly synthesized iron oxide nanoparticles. J Drug Delivery Sci Technol. 2022;75. doi: 10.1016/j.jddst.2022.103642
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021 Jan;199(1):344–370. doi: 10.1007/s12011-020-02138-3
  • García SL, Raghavan V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-a review. Crit Rev Food Sci Nutr. 2022;62(23):6446–6466. doi: 10.1080/10408398.2021.1901651 Epub 2021 Apr 1. PMID: 33792417.
  • Dauda AB, Ajadi A, Tola-Fabunmi AS, et al. Waste production in aquaculture: sources, components and managements in different culture systems. Aquacult Fish. 2019;4(3):81–88. doi: 10.1016/j.aaf.2018.10.002
  • Joshi R, Sharma DC (2018). Banana peel: a valuable waste. J Pharmacogn Phytochem, 7(1):1790–1793.
  • Mahmoud N, Aqabani H, Hikmat S, et al. Colloidal stability and cytotoxicity of polydopamine-conjugated gold nanorods against prostate cancer cell lines. Molecules. 2021;26(5):1299. doi: 10.3390/molecules26051299
  • Bankar A, Joshi B, Kumar AR, et al. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp. (2010);368(1–3):58–63. doi: 10.1016/j.colsurfa.2010.07.024
  • Majumder A, Ramrakhiani L, Mukherjee D, et al. Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Technol Envir. (2019);21(4):795–813. doi: 10.1007/s10098-019-01669-1
  • Tyagi PK, Gupta S, Tyagi S, et al. Green synthesis of iron nanoparticles from spinach leaf and banana peel aqueous extracts and evaluation of antibacterial potential. J Nanomater. 2021;2021:4871453. doi: 10.1155/2021/4871453
  • Ehiowemwenguan G, Emoghene AO, Inetianbor JE. Antibacterial and phytochemical analysis of banana fruit peel. IOSR J Pharm. (2014);4(8):18–25. doi: 10.9790/3013-0408018025
  • Zou Y, Li D, Wang Y, et al. Polyethylenimine nanogels incorporated with ultrasmall iron oxide nanoparticles and doxorubicin for MR imaging-guided chemotherapy of tumors. Bioconjugate Chem. 2020;31(3):907–915. doi: 10.1021/acs.bioconjchem.0c00036
  • Abu-Rumman A, Abu-Huwaij R, Rania Hamed R. Development and in vitro appraisal of Soluplus® and/or Carbopol® 971 buccoadhesive patches releasing atorvastatin. J Adhes. 2022;98(7):915–933. doi: 10.1080/00218464.2020.1864337
  • Abu-Huwaij R, Abbas MM, Al-Shalabi R, et al. Synthesis of transdermal patches loaded with greenly synthesized zinc oxide nanoparticles and their cytotoxic activity against triple negative breast cancer. Appl Nanosci. (2022);12(1):69–78. doi: 10.1007/s13204-021-02166-y
  • Saif S, Tahir A, Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 2016;6(11):209. doi: 10.3390/nano6110209
  • Goh HT, Cheok CY, Yeap SP. Green synthesis of silver nanoparticles using banana peel extract and application on banana preservation. Food Front. (2023);4(1):283–288. doi: 10.1002/fft2.206
  • Abid MA, Kadhim DA, Aziz WJ (2020). Iron oxide nanoparticle synthesis using trigonella and tomato extracts and their antibacterial activity. Mater Technol, 37(8):547–554. doi: 10.1080/10667857.2020.1863572
  • Wabler M, Zhu W, Hedayati M, et al. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content. Int J Hyperthermia. (2014);30(3):192–200. doi: 10.3109/02656736.2014.913321
  • Yu M, Ji N, Wang Y, et al. Starch-based nanoparticles: stimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf. 2021 Jan;20(1):1075–1100. doi: 10.1111/1541-4337.12677
  • Kim DK, Mikhaylova M, Wang FH, et al. Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater. (2003);15(23):4343–4351. doi: 10.1021/cm031104m
  • Suljagić M, Vulić P, Jeremić D, et al. The influence of the starch coating on the magnetic properties of nanosized cobalt ferrites obtained by different synthetic methods. Mater Res Bull. 2021;134:111117. doi: 10.1016/j.materresbull.2020.111117
  • Al-Qubaisi M, Rasedee A, Flaifel MH, et al. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett. (2016);11(1):276. doi: 10.1186/s11671-016-1498-2
  • Shahdeo D, Roberts A, Kesarwani V, et al. Polymeric biocompatible iron oxide nanoparticles labelled with peptides for imaging in ovarian cancer. Biosci Rep. 2022;42(2): BSR20212622. doi: 10.1042/BSR20212622
  • Khalil T, Ovais M, Ullah I, et al. Artificial cells, Nanomedicine, and biotechnology sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artific Cells Nanomed Biotechnol. (2017);46(4):838–852. doi: 10.1080/21691401.2017.1345928
  • Kamsonlian S, Balomajumder C, Chand S (2012). A potential of biosorbent derived from banana peel for removal of as (III) from contaminated water. Int J Chem Sci Appl. 3(2):269–275
  • Sankadiya S, Oswal N, Jain P, et al. Synthesis and characterization of Fe2O3 nanoparticles by simple precipitation method. AIP Conf Proc. 2016 April;1724(1):020064. AIP Publishing LLC.
  • Dung TT, Danh TM, Hoa LTM, et al. Structural and magnetic properties of starch-coated magnetite nanoparticles. J Exp Nanosci. 2009;4(3):259–267. doi: 10.1080/17458080802570609
  • Mohapatra S, Asfer M, Anwar M, et al. Doxorubicin loaded carboxymethyl Assam bora rice starch coated superparamagnetic iron oxide nanoparticles as potential antitumor cargo. Heliyon. 2019;5(6):e01955. doi: 10.1016/j.heliyon.2019.e01955
  • Saikia C, Das MK, Ramteke A, et al. Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. Int j biol macromol. 2016;93:1121–1132.‏. doi: 10.1016/j.ijbiomac.2016.09.043
  • Mahmoud N, Qabooq H, Alsotari S, et al. Quercetin-gold nanorods incorporated into nanofibers: development, optimization and cytotoxicity. RSC Adv. 2021 Jun 7;11(33): 19956–19966. doi: 10.1039/d1ra02004h PMID: 35479887; PMCID: PMC9033756.
  • Lee H, Park S, Kim JB, et al. Entrapped doxorubicin nanoparticles for the treatment of metastatic anoikis-resistant cancer cells. Cancer Lett. 2013 May 10;332(1):110–9. doi: 10.1016/j.canlet.2013.01.021
  • Chen Y, Pan R, Guo L, et al. Transdermal delivery of meloxicam via hydrogel and microemulsion-based gel: a comparative study. J Pharmaceut sci. (2019);108(6):2086–2093. doi: 10.1016/j.xphs.2019.01.010
  • Chen X, Taguchi T. Enhanced skin adhesive property of hydrophobically modified poly(vinyl alcohol) films. ACS Omega. 2020;5(3):1519–1527. doi: 10.1021/acsomega.9b03305
  • Patel MR, Patel RB, Parikh JR, et al. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies. Appl Nanosci (Switzerland). (2016);6(4):539–553. doi: 10.1007/s13204-015-0457-z
  • Pagano C, Ceccarini MR, Calarco P, et al. Bioadhesive polymeric films based on using acid for burn wound treatment: antibacterial and cytotoxicity studies. Colloids Surf B Biointerfaces. 2019;178:488–499. doi: 10.1016/j.colsurfb.2019.03.001