Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CeAlO3 nanoparticle synthesis through combustion-assisted method and structural property assessment in Nano-CeAlO3 polymer composites

, &
Article: 2330279 | Received 25 Feb 2024, Accepted 11 Mar 2024, Published online: 27 Mar 2024

References

  • Venkatesan K, Rajan Babu D, Kavya Bai MP, et al. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications. Int J Nanomed. 2015;10(sup2): 189–17. doi: 10.2147/IJN.S82210
  • Jani P, Desai H, Madhukar BS, et al. Investigations of calcium ferrite nanoparticles synthesized by sol-gel auto combustion and solution mixture methods. Mater Res Innovations. 2022;26(3):189–195. doi: 10.1080/14328917.2021.1932318
  • La J, Huang Y, Luo G, et al. Synthesis of bismuth oxide nanoparticles by solution combustion method. Part Sci Technol. 2013;31(3):287–290. doi: 10.1080/02726351.2012.727525
  • Ortiz-Quiñonez JL, Pal U, Villanueva MS. Structural, magnetic, and catalytic evaluation of spinel co, ni, and co–ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega. 2018;3(11):14986–15001. doi: 10.1021/acsomega.8b02229
  • Panthong P, Klaytae T, Boonma K, et al. Preparation of SrTiO3 nanopowder via Sol-gel combustion method. Ferroelectrics. 2013;455(1):29–34. doi: 10.1080/00150193.2013.843412
  • Liu Y, Zhang Y, Feng JD, et al. Dependence of magnetic properties on crystallite size of CoFe2O4 nanoparticles synthesised by auto-combustion method. J Exp Nanosci. 2009;4(2):159–168. doi: 10.1080/17458080902929895
  • ) Hamisu A, Gaya UI, Abdullah AH. Bi-template assisted sol-gel synthesis of photocatalytically-active mesoporous anatase TiO2 nanoparticles. Appl Sci And Eng Prog. 2021;14(3):313–327. doi: 10.14416/j.asep.2021.04.003
  • Rao KV, Sunandana CS. Structure and micro structure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. Synth ReactInorg Metal-Org Nano-Metal Chem. 2008;38(2):173–180.
  • Devasena SM, Murali G, Amaranatha Reddy D, et al. Optical, magnetic, and photoluminescence properties of Cr/Mn-doped ZnO nanoparticles synthesised by solution combustion method. Mater Sci Technol. 2023;39(18):3076–3089. doi: 10.1080/02670836.2023.2239630
  • Pramila S, Lakshmi Ranganatha V, Nagaraju G, et al. Microwave and combustion methods: a comparative study of synthesis, characterization, and applications of NiO nanoparticles. Inorg Nano-Metal Chem. 2023;53(6):527–538. doi: 10.1080/24701556.2022.2081188
  • Rani R, Dhiman P, Sharma SK, et al. Structural and magnetic studies of Co0.6Zn0. 4Fe2O4 nanoferrite synthesized by solution combustion method. Synth ReactInorg Metal-Org Nano-Metal Chem. 2012;42(3):360–363. doi: 10.1080/15533174.2011.611062
  • Chaiyo N, Ruangphanit A, Boonchom B, et al. Facile synthesis of lead-free piezoelectric sodium niobate (NaNbo3) powders via the solution combustion method. Ferroelectrics. 2011;415(1):75–82. doi: 10.1080/00150193.2011.577374
  • Rana S, Rawat J, Sorensson MM, & Misra RDK. Antimicrobial function of Nd3±doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomaterialia. 2006;2(4):421–432. doi: 10.1016/j.actbio.2006.03.005
  • Sunkara BK, & Misra RDK. Enhanced antibactericidal function of W4±doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system. Acta Biomaterialia. 2008;4(2):273–283. doi: 10.1016/j.actbio.2007.07.002
  • Misra RDK. Magnetic nanoparticle carrier for targeted drug delivery: perspective, outlook and design. Mater Sci Technol. 2008;24(9):1011–1019. doi: 10.1179/174328408X341690
  • Rawat J, Rana S, Srivastava R, & Misra RDK. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C. 2007; 27(3):540–545. doi: 10.1016/j.msec.2006.05.021
  • Misra RDK, Gubbala S, Kale A, et al. A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Mater Sci Eng B. 2004;111(2–3):164–174. doi: 10.1016/j.mseb.2004.04.014
  • Venkatasubramanian R, Srivastava RS, Misra RDK. Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants. Mater Sci Technol. 2008;24(5):589–595. doi: 10.1179/174328408X282065
  • Chandrasekaran S, Misra RDK. Photonic antioxidant ZnS (cd) nanorod synthesis for drug carrier and bioimaging. Mater Technol. 2013;28(4):228–233. doi: 10.1179/1753555713Y.0000000084
  • Deeraj BDS, Joseph K, Jayan JS, & Saritha A. Dynamic mechanical performance of natural fiber reinforced composites: a brief review. Appl Sci And Eng Prog. 2021;14(4):614–623.
  • Thakur VK, Thakur MK, Gupta RK. Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact. 2014;19(3):256–271. doi: 10.1080/1023666X.2014.880016
  • Kumar R, Ul Haq MI, Raina A, et al. Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities. Int J Sustainable Eng. 2019;12(3):212–220. doi: 10.1080/19397038.2018.1538267
  • Thakur VK, Singha AS. Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym-Plast Technol Eng. 2010;49(7):694–700. doi: 10.1080/03602551003682067
  • Jagadeesh P, Puttegowda M, Thyavihalli Girijappa YG, et al. Effect of natural filler materials on fiber reinforced hybrid polymer composites: an overview. J Nat Fibers. 2022;19(11):4132–4147. doi: 10.1080/15440478.2020.1854145
  • Todkar SS, & Patil SA. Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites. 2019;174:106927. doi: 10.1016/j.compositesb.2019.106927
  • Vadivelu MA, Kumar CR, Joshi GM. Polymer composites for thermal management: a review. Compos Interfaces. 2016;23(9):847–872. doi: 10.1080/09276440.2016.1176853
  • Sudeep PK, Emrick T. Polymer‐nanoparticle composites: preparative methods and electronically active materials. Polymer Rev. 2007;47(2):155–163. doi: 10.1080/15583720701271229
  • Srikanth C, & Madhu GM (2017, December). Synthesis, characterization and properties evaluation of ZrO2 and its composites–A review. In International Conference on Advances in Thermal Systems, Materials and Design Engineering; Mumbai, India. (ATSMDE2017).
  • Puttegowda M, Pulikkalparambil H, & Rangappa SM Trends and developments in natural fiber composites. Appl Sci And Eng Prog, 14(4):2021;543–552. doi: 10.14416/j.asep.2021.06.006
  • Njuguna J, Pielichowski K. Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater. 2003;5(11):769–778. doi: 10.1002/adem.200310101
  • ) Setswalo K, Molaletsa N, Oladijo OP, Akinlabi ET, Rangappa SM, & Siengchin S. The influence of fiber processing and alkaline treatment on the properties of natural fiber-reinforced composites: a review. Appl Sci And Eng Prog.2021;14(4):632–650. doi: 10.14416/j.asep.2021.08.005
  • Kausar A. Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: a review. Polym Plast Technol Eng. 2020;59(8):895–909. doi: 10.1080/25740881.2019.1708103
  • Arbaoui J, Moustabchir H, Vigué JR, et al. The effects of various nanoparticles on the thermal and mechanical properties of an epoxy resin. Mater Res Innovations. 2016;20(2):145–150. doi: 10.1179/1433075X15Y.0000000026
  • Jabbar M, Karahan M, Nawab Y, et al. Effect of silica nanoparticles on mechanical properties of Kevlar/epoxy hybrid composites. J Tex Inst. 2019;110(4):606–613. doi: 10.1080/00405000.2018.1529213
  • Tee ZY, Yeap SP, Hassan CS, et al. Nano and non-nano fillers in enhancing mechanical properties of epoxy resins: a brief review. Polym Plast Technol Eng. 2022;61(7):709–725. doi: 10.1080/25740881.2021.2015778
  • Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J. 2006;42(9):1994–2003. doi: 10.1016/j.eurpolymj.2006.03.012
  • Zhang JL, Srivastava RS, Misra RDK. Core− shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir. 2007;23(11):6342–6351. doi: 10.1021/la0636199
  • Yuan Q, Misra RDK. Polymer nanocomposites: current understanding and issues. Mater Sci Technol. 2006;22(7):742–755. doi: 10.1179/174328406X101292
  • Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomaterialia. 2007;3(6):838–850. doi: 10.1016/j.actbio.2007.05.011
  • Misra RDK, Hadal R, Duncan SJ. Surface damage behavior during scratch deformation of mineral reinforced polymer composites. Acta Materialia. 2004;52(14):4363–4376. doi: 10.1016/j.actamat.2004.06.003
  • Challa VSA, Misra RDK. Periodic crystallisation of polymers on carbon nanotubes: geometrical confinement versus epitaxy. Mater Technol. 2017;32(2):109–115. doi: 10.1080/10667857.2016.1143691
  • Majidi B. Geopolymer technology, from fundamentals to advanced applications: a review. Mater Technol. 2009;24(2):79–87. doi: 10.1179/175355509X449355
  • Ileperuma OA. Gel polymer electrolytes for dye sensitised solar cells: a review. Mater Technol. 2013;28(1–2):65–70. doi: 10.1179/1753555712Y.0000000043
  • Singh R, Lee PD, Dashwood RJ, et al. Titanium foams for biomedical applications: a review. Mater Technol. 2010;25(3–4):127–136. doi: 10.1179/175355510X12744412709403
  • Chaubey A, Aadil KR, Jha H. Synthesis and characterization of lignin-poly lactic acid film as active food packaging material. Mater Technol. 2021;36(10):585–593. doi: 10.1080/10667857.2020.1782060
  • Jeong SY, Wagh AS. Cementing the gap between ceramics, cements, and polymers. Mater Technol. 2003;18(3):162–168. doi: 10.1080/10667857.2003.11753035
  • Wang H, Sun J, Li J, et al. Roughness modelling analysis for milling of carbon fibre reinforced polymer composites. Mater Technol. 2015;30(sup1):A46–A50. doi: 10.1179/1753555715Y.0000000002
  • Rafique I, Kausar A, Anwar Z, et al. Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: a review. Polym-Plast Technol Eng. 2016;55(3):312–333. doi: 10.1080/03602559.2015.1070874
  • Giovino M, Pribyl J, Benicewicz B, et al. Mechanical properties of polymer grafted nanoparticle composites. Nanocomposites. 2018;4(4):244–252. doi: 10.1080/20550324.2018.1560988
  • Rathod VT, Kumar JS, Jain A. Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci. 2017;7(8):519–548. doi: 10.1007/s13204-017-0592-9
  • Irzhak VI, Dzhardimalieva GI, Uflyand IE. Structure and properties of epoxy polymer nanocomposites reinforced with carbon nanotubes. J Polym Res. 2019;26(9):1–27. doi: 10.1007/s10965-019-1896-0
  • Idumah CI, Zurina M, Ogbu J, Ndem JU, & Igba EC. A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture. Compos Interfaces. 2019; 27 1 1–72 10.1080/09276440.2019.1600972
  • Prasanth G, Madhu GM, Kottam N. Combustion assisted synthesis of CuO nanoparticles and structure-property evaluation in nano-CuO polymer composites. Appl Sci And Eng Prog. 2024 Apr-Jun;17(2): In progress. doi: 10.14416/j.asep.2023.11.009
  • Kashyap SJ, Sankannavar R, Madhu GM. Insights on the various structural, optical and dielectric characteristics of La1-x ca x FeO3 perovskite-type oxides synthesized through solution-combustion technique. Appl Phys A. 2022;128(6):518. doi: 10.1007/s00339-022-05628-4
  • Priyadharsini P, Pradeep A, Murugesan C, et al. Phase evolution in BiFeO3 nanoparticles prepared by glycine-assisted combustion method. Combust Sci Technol. 2014;186(3):297–312. doi: 10.1080/00102202.2013.859682
  • Assi N, Mohammadi A, Manuchehri QS, et al. Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and.
  • ) Ma Y, Ma Y, Li J, Li Q, Hu X, Ye Z, … & Dong D. CeO2-promotion of NiAl2O4 reduction via CeAlO3 formation for efficient methane reforming. J Energy Inst. 2020; 93(3):991–999. doi: 10.1016/j.joei.2019.09.001
  • Rao JK, Raizada A, Ganguly D, et al. Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. J Mater Sci. 2015;50(21):7064–7074. doi: 10.1007/s10853-015-9261-0
  • Shahbakhsh S, Tohidlou E, Khosravi H. Influence of modified carbonate calcium nanoparticles on the mechanical properties of carbon fiber/epoxy composites. J Tex Inst. 2020;111(4):550–554. doi: 10.1080/00405000.2019.1651155
  • Aigbodion VS. Explicit microstructure and electrical conductivity of epoxy/carbon nanotube and green silver nanoparticle enhanced hybrid dielectric composites. Nanocomposites. 2021;7(1):35–43. doi: 10.1080/20550324.2020.1868690
  • Mallakpour S, Derakhshan F. Opportunities and challenges in the use of TiO2 nanoparticles modified with citric acid to synthesize advanced nanocomposites based on poly (amide-imide) containing N, N′-(pyromellitoyl)-bis-L-leucine segments. Int J Polym Anal Charact. 2014;19(8):750–764. doi: 10.1080/1023666X.2015.954771
  • Srikanth C, and Madhu GM, “Effect of ZTA concentration on structural, thermal, mechanical and dielectric behavior of novel ZTA–PVA nanocomposite films,” SN Applied Sci, vol. 2, no. 3, 2020, doi:10.1007/s42452-020-2232-3.
  • Aruna ST, Kini NS, Shetty S, et al. Synthesis of nanocrystalline CeAlO3 by solution-combustion route. Materials Chemistry & Physics. 2010;119(3):485–489. doi: 10.1016/j.matchemphys.2009.10.001
  • Srikanth C, Madhu GM. Effect of nano CdO-ZnO content on structural, thermal, optical, mechanical and electrical properties of epoxy composites. J Met Mater Miner. 2023;33(2):38–52. doi: 10.55713/jmmm.v33i2.1590
  • Venâncio SA, & de Miranda PEV. Synthesis of CeAlO3/CeO2–Al2O3 for use as a solid oxide fuel cell functional anode material. Ceram Int. 2011;37(8):3139–3152. doi: 10.1016/j.ceramint.2011.05.054
  • Jena PK, Samal P, Nayak S, Behera JR, Khuntia SK, Mohapatra J, … & Malla C. Experimental investigation on the mechanical, thermal, and morphological behaviour of Prosopis juliflora bark reinforced epoxy polymer composite. J Nat Fibers.2022;19(14):8593–8603. 10.1080/15440478.2021.1964144
  • Sharma P, Shah DV, Thakor S, Watpade AD, Rana VA, & Vaja CR. Compositional influence of synthesized magnetic nanoparticles on epoxy composites: dielectric, magnetic, and optical characteristics. J Macromol Sci, Part B. 2023;1–35. doi: 10.1080/00222348.2023.2263293
  • Chen W, Zhao G, Xue Q, et al. High carbon-resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 reforming. Appl Catal B Environ. 2013;136:260–268. doi: 10.1016/j.apcatb.2013.01.044
  • Wang J, Feng L, Feng Y, et al. Preparation and properties of organic rectorite/epoxy resin nano-composites. Polym-Plast Technol Eng. 2012;51(15):1583–1588. doi: 10.1080/03602559.2012.716894
  • Thakur S, Bhattacharya R, Neogi S, et al. Enhancement of microwave absorption properties of epoxy by sol–gel-Synthesised ZnO nanoparticles. Indian Chem Eng. 2016;58(4):310–324. doi: 10.1080/00194506.2015.1090888
  • Kashyap SJ, Sankannavar R, Madhu GM. Synthesis and characterization of La (ce, ba) NiO3 perovskite-type oxides. J Superconductivity Novel Magnetism. 2022;35(7):2107–2118. doi: 10.1007/s10948-022-06219-3
  • Sagar JS, Madhu GM, Koteswararao J, & Dixit P. Studies on thermal and mechanical behavior of nano TiO2-epoxy polymer composite. Commun Sci Technol. 2022;7(1):38–44. doi: 10.21924/cst.7.1.2022.667
  • ) Kashyap SJ, Sankannavar R, & Madhu GM. Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization. J Korean Ceram Soc. 2022;59(6):846–858. doi: 10.1007/s43207-022-00225-w
  • Kamonsuangkasem K, Therdthianwong S, Therdthianwong A, & Thammajak N. Remarkable activity and stability of Ni catalyst supported on CeO2-Al2O3 via CeAlO3 perovskite towards glycerol steam reforming for hydrogen production. Appl Catal B Environ. 2017;218:650–663. doi: 10.1016/j.apcatb.2017.06.073
  • Kurajica S, Mandić V, Mužina K, Panžić I, Kralj D, Duplančić M, & Ivković IK. Thermal stability and properties of Pd/CeAlO3 catalyst prepared by combustion synthesis. J Therm Anal Calorim. 2023;1–10:148 20 doi: 10.1007/s10973-023-12233-x
  • Kausar A. An investigation on epoxy/poly (urethane-amide)-based interpenetrating polymer network reinforced with an organic nanoparticle. Mater Res Innovations. 2018;22(2):58–68. doi: 10.1080/14328917.2016.1265232
  • Wang Y, Yao D, He Z, et al. Enhanced mechanical and damping properties of epoxy using aggregated nanoparticles organic-inorganic hybrid as a filler. Compos Interfaces. 2022;29(5):523–536. doi: 10.1080/09276440.2021.1982334
  • Mishra R, Tiwari R, Marsalkova M, et al. Effect of TiO2 nanoparticles on basalt/polysiloxane composites: mechanical and thermal characterization. J Tex Inst. 2012;103(12):1361–1368. doi: 10.1080/00405000.2012.685270
  • Nazari A, Riahi S. RETRACTED ARTICLE: the effects of SnO2 nanoparticles on physical and mechanical properties of high-strength self-compacting concrete. J Exp Nanosci. 2012;7(5):559–577. doi: 10.1080/17458080.2010.543991
  • Nazari A, Riahi S. RETRACTED ARTICLE: the effects of ZrO2 nanoparticles on strength assessments and water permeability of concrete in different curing media. J Exp Nanosci. 2013;8(4):413–433. doi: 10.1080/17458080.2011.586369
  • Srikanth C, Madhu GM, & Kashyap SJ. Enhanced structural, thermal, mechanical and electrical properties of nano ZTA/epoxy composites. AIMS Mat Sci. 2022;9(2):214–235 doi: 10.3934/matersci.2022013
  • Kottam N, & Smrithi SP. Luminescent carbon nanodots: current prospects on synthesis, properties and sensing applications. Methods Appl Fluoresc. 2021;9(1):012001. 10.1088/2050-6120/abc008
  • Sailaja Prasannakumaran Nair S, Kottam N, & SG PK. Green synthesized luminescent carbon nanodots for the sensing application of Fe3+ ions. J Fluoresc. 2020;30(2):357–363. doi: 10.1007/s10895-020-02505-2
  • Megahed M, Megahed AA, Agwa MA. Mechanical properties of on/off-axis loading for hybrid glass fiber reinforced epoxy filled with silica and carbon black nanoparticles. Mater Technol. 2018;33(6):398–405. doi: 10.1080/10667857.2018.1454022
  • Marjanović M, Bajić D, Perković S, et al. Inorganic fullerene-like nanoparticles and nanotubes of tungsten disulfide as reinforcement of carbon-epoxy composites. Fuller Nanotub Car Nanostruct. 2021;29(12):1034–1044. doi: 10.1080/1536383X.2021.1928644
  • Halder S, Ghosh PK, Goyat MS, et al. Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J Adhes Sci Technol. 2013;27(2):111–124. doi: 10.1080/01694243.2012.701510
  • Chakradhar KVP, Subbaiah KV, Kumar MA, et al. Blended epoxy/polyester polymer nanocomposites: effect of “nano” on mechanical properties. Polym-Plast Technol Eng. 2012;51(1):92–96. doi: 10.1080/03602559.2011.618157
  • Hiremath A, Ambekar AM, Thipperudrappa S, et al. Understanding the interfacial interaction of TiO2 nanoparticles filled glass fiber/epoxy composites through dynamic mechanical analysis. Compos Interfaces. 2023;30(7):787–802. doi: 10.1080/09276440.2023.2176058
  • Kitichatpayak D, Makcharoen W, Vittayakorn N, et al. Influence of various nanofillers on mechanical and electrical properties of epoxy resin composites. Polym Plast Technol Eng. 2022;61(16):1826–1832. doi: 10.1080/25740881.2022.2084412
  • Nayak SK, Mohanty D. Silver nanoparticles decorated α-alumina as a hybrid filler to fabricate epoxy-based thermal conductive hybrid composite for electronics packaging application. J Adhes Sci Technol. 2020;34(14):1507–1525. doi: 10.1080/01694243.2020.1714138
  • Pillai KV, Hunt PR, & Duncan TV. Nanoparticles in polymer nanocomposite food contact materials: uses, potential release, and emerging toxicological concerns. Toxicants In Food Packaging And Household Plastics: Exposure And Health Risks To Consumers. 2014;95–123.
  • Rafique I, Kausar A, Muhammad B. Epoxy resin composite reinforced with carbon fiber and inorganic filler: overview on preparation and properties. Polym-Plast Technol Eng. 2016;55(15):1653–1672. doi: 10.1080/03602559.2016.1163597
  • Sultan MTH, Rajesh M. Repair of advanced composites for aerospace applications. Jayakrishna, K. Eds. CRC Press; 2022.
  • Hoseinlaghab S, Farahani M, Safarabadi M. Improving the impact resistance of the multilayer composites using nanoparticles. Mechanics Based Design Of Structures And Machines. 2023;51(6):3083–3099. doi: 10.1080/15397734.2021.1917424
  • Ghanbarzadeh B, Oleyaei SA, Almasi H. Nanostructured materials utilized in biopolymer-based plastics for food packaging applications. Crit Rev Food Sci Nutr. 2015;55(12):1699–1723. doi: 10.1080/10408398.2012.731023
  • Hiremath V, Shukla DK. Effect of particle morphology on viscoelastic and flexural properties of epoxy–alumina polymer nanocomposites. Plast Rubber Compos. 2016;45(5):199–206. doi: 10.1080/14658011.2016.1159778
  • Sadhu SPP, Siddabattuni S, Ponraj B, Molli M, Sai Muthukumar V, & Varma KBR. Enhanced dielectric properties and energy storage density of interface controlled ferroelectric BCZT-epoxy nanocomposites. Compos Interfaces. 2017;24(7):663–675. doi: 10.1080/09276440.2017.1262665