Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of piezoresistive poly(ɛ-caprolactone) sensor with unique flexibility and sensing performance for rehabilitative application

, , , , , , , & ORCID Icon show all
Article: 2332040 | Received 29 Feb 2024, Accepted 14 Mar 2024, Published online: 25 Mar 2024

References

  • Boukhennoufa I, Zhai X, Utti V, et al. Wearable sensors and machine learning in post-stroke rehabilitation assessment: a systematic review. Biomed Signal Process Control. 2022;71:103197. doi: 10.1016/j.bspc.2021.103197
  • Liao Y, Vakanski A, Xian M, et al. A review of computational approaches for evaluation of rehabilitation exercises. Comput Biol Med. 2020;119:119. doi: 10.1016/j.compbiomed.2020.103687
  • Sengupta D, Pei Y, Kottapalli AGP. Ultralightweight and 3D squeezable graphene-polydimethylsiloxane composite foams as piezoresistive sensors, ACS Appl Mater Inter. 2019;11(38);35201–10. doi: 10.1021/acsami.9b11776
  • Wang Z, Ma Z, Sun J, et al., Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors, Polymers. 2021; 13(5): 813 doi: 10.3390/polym13050813
  • Pierre Claver U, Zhao G. Recent progress in flexible pressure sensors based electronic skin. Adv Eng Mater. 2021;23(5). doi: 10.1002/adem.202001187
  • Wang Y, Chao M, Wan P, et al. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy. 2020;70:104560. doi: 10.1016/j.nanoen.2020.104560
  • Guo W-T, Tang X-G, Tang Z, et al., Recent advances in polymer composites for flexible pressure sensors, Polymers. 2023;15(9): 2176 doi: 10.3390/polym15092176
  • Xu S, Xu Z, Li D, et al., Recent Advances in Flexible Piezoresistive Arrays: Materials, Design And Applications Polymers, 2023;15(12): 2699. doi: 10.3390/polym15122699
  • Zhong F, Hu W, Zhu P, et al., Piezoresistive design for electronic skin: from fundamental to emerging applications, OEA. 2022;5(8):210029–1–210029–32. doi: 10.29026/oea.2022.210029
  • Yang JC, Mun J, Kwon SY, et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater. 2019;31(48). doi: 10.1002/adma.201904765
  • Stassi S, Cauda V, Canavese G, et al. Flexible tactile sensing based on piezoresistive composites: a review. Sensors. 2014;14(3):5296–5332. doi: 10.3390/s140305296
  • Zhao X, Zhao S, Zhang X, et al., Recent progress in flexible pressure sensors based on multiple microstructures: from design to application, Nanoscale. 2023;15(11): 5111–5138. doi: 10.1039/D2NR06084A
  • Lee Y, Myoung J, Cho S, et al., Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano. 2021;15(1):1795–1804. doi: 10.1021/acsnano.0c09581
  • Bae GY, Pak SW, Kim D, et al., Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater. 2016;28(26):5300–5306. doi: 10.1002/adma.201600408
  • Bai N, Wang L, Xue Y, et al., Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range, ACS Nano. 2022;16(3):4338–4347. doi: 10.1021/acsnano.1c10535
  • Tang X, Yang W, Yin S, et al. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl Mater Inter. 2021;13(17):20448–20458. doi: 10.1021/acsami.0c22784
  • Mao Y, Ji B, Chen G, et al. Robust and wearable pressure sensor assembled from AgNW-coated PDMS micropillar sheets with high sensitivity and wide detection range. ACS Appl Nano Mater. 2019;2(5):3196–3205. doi: 10.1021/acsanm.9b00503
  • Yan J, Ma Y, Li X, et al. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure. Ceram Int. 2020;46(15):23592–23598. doi: 10.1016/j.ceramint.2020.06.131
  • Ma C, Xu D, Huang Y-C, et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks, ACS Nano. 2020;14(10):12866–12876. doi: 10.1021/acsnano.0c03659
  • Cheng L, Qian W, Wei L, et al. A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions. J Mater Chem C. 2020;8(33):11525–11531. doi: 10.1039/D0TC02539A
  • Zhu B, Ling Y, Yap LW, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl Mater Inter. 2019;11(32):29014–29021. doi: 10.1021/acsami.9b06260
  • Liu W, Liu N, Yue Y, et al., Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film, Small. 2018;14(15). doi: 10.1002/smll.201704149
  • Luo F-F, Liu P, Qiu T-C, et al., Effects of femtosecond laser micropatterning on the surface properties and cellular response of biomedical tantalum-blended composites, J Cent South Univ.2022;29(10):3376–3384.
  • Zhang C, Chen R, Xiao C, et al. Laser direct writing of highly ordered two-level hierarchical microstructures for flexible piezoresistive sensor with enhanced sensitivity. Adv Mater Interfaces. 2022;9(1). doi: 10.1002/admi.202101596
  • Niu H, Zhang H, Yue W, et al., Micro-nano processing of active layers in flexible tactile sensors via template methods: A review. Small. 2021;17(41):2100804. doi: 10.1002/smll.202100804
  • Yan J, Ma Y, Jia G, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem Eng J. 2022;431:133458. doi: 10.1016/j.cej.2021.133458
  • Qin J, Yin L-J, Hao Y-N, et al. Flexible and stretchable capacitive sensors with different microstructures. Adv Mater. 2021;33(34):2008267. doi: 10.1002/adma.202008267
  • Zhou F, Cui CJ, Sun SB, et al. Electrospun ZnO-loaded chitosan/PCL bilayer membranes with spatially designed structure for accelerated wound healing. Carbohydr Polym. 2022;282:119131. doi: 10.1016/j.carbpol.2022.119131
  • Yang T, Xiang H, Qin C, et al., Highly sensitive 1T-MoS2 pressure sensor with wide linearity based on hierarchical microstructures of leaf vein as Spacer, Adv Electron Mater. 2020;6(1). doi: 10.1002/aelm.201900916
  • Wang Z-Y, Teoh SH, Johana NB, et al. Enhancing mesenchymal stem cell response using uniaxially stretched poly(ε-caprolactone) film micropatterns for vascular tissue engineering application. J Mat Chem B. 2014;2(35):5898–5909. doi: 10.1039/C4TB00522H
  • Wang ZY, Teo EY, Chong MSK, et al., Biomimetic three-dimensional anisotropic geometries by uniaxial stretch of poly(epsilon-caprolactone) films for mesenchymal stem cell proliferation, alignment, and myogenic differentiation. Tissue Eng Part C Methods. 2013;19(7):538–549. doi: 10.1089/ten.tec.2012.0472
  • Piyasin P, Yensano R, Pinitsoontorn S. Size-Controllable Melt-Electrospun Polycaprolactone (PCL) fibers with a sodium chloride additive, Polymers. 2019;11(11):1768. doi: 10.3390/polym11111768
  • Shi J, Wang L, Dai Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small. 2018;14(27). doi: 10.1002/smll.201800819
  • Wu P, Xiao A, Zhao Y, et al., An implantable and versatile piezoresistive sensor for the monitoring of human-machine interface interactions and the dynamical process of nerve repair, Nanoscale. 2019;11(44):21103–21118. doi: 10.1039/C9NR03925B
  • Shi J, Wang L, Dai Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small. 2018;14(27):e1800819. doi: 10.1002/smll.201800819