Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bio fabrication of Fe2O3 NPs and their analgesia efficiency for post-operative epidural anaesthetic applications- study of chronic inflammatory pain model in mice

, , ORCID Icon &
Article: 2334515 | Received 04 Aug 2023, Accepted 20 Mar 2024, Published online: 04 Apr 2024

References

  • Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 2001;409:66–12. doi: 10.1038/35051047
  • Arias JL, Lopez-Viota M, Lopez-Viota J, et al. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Pharm. 2009;382(1–2):270–276. doi: 10.1016/j.ijpharm.2009.08.019
  • Betbeder D, Sperandio S, Latapie JP, et al. Biovector nanoparticles improve antinociceptive efficacy of nasal morphine. Pharm Res. 2000;17(6):743–748. doi: 10.1023/A:1007594602449
  • Wolf NB, Kuchler S, Radowski MR, et al. Influences of opioids and nanoparticles on in vitro wound healing models. Pharm Biopharm. 2009;73(1):34–42. doi: 10.1016/j.ejpb.2009.03.009
  • Umar A, Akhtar MS, Dar GN, et al. Low-temperature synthesis of α-Fe2O3 hexagonal nanoparticles for environmental remediation and smart sensor applications. Talanta. 2013;116:1060–1066. doi: 10.1016/j.talanta.2013.08.026
  • Zhong DK, Sun JW, Inumaru H, et al. Solar water oxidation by composite Catalyst/α-Fe2O3 photoanodes. J Am Chem Soc. 2009;131(17):6086–6087. doi: 10.1021/ja9016478
  • Zhong Z, Lin J, Teh SP, et al. A rapid and efficient method to deposit gold particles onto catalyst supports and its application for CO oxidation at low temperatures. Adv Funct Mater. 2007;17(8):1402. doi: 10.1002/adfm.200601121
  • Kozlova AP, Sugiyama S, Kozlov AI, et al. Iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3): state and structure of the support. J Catal. 1998;176(2):426–438. doi: 10.1006/jcat.1998.2069
  • Hradil D, Grygar T, Hradilova J, et al. Clay and iron oxide pigments in the history of painting. Appl Clay Sci. 2003;22(5):223–236. doi: 10.1016/S0169-1317(03)00076-0
  • Liu XQ, Tao SW, Shen YS. Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sens Actuators B. 1997;40(2–3):161–165. doi: 10.1016/S0925-4005(97)80256-0
  • Espin MJ, Delgado AV, Duran JDG. Optical properties of dilute hematite/silicone oil suspensions under low electric fields. J Colloid Interface Sci. 2005;287(1):351–359. doi: 10.1016/j.jcis.2005.01.081
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–2110. doi: 10.1021/cr068445e
  • Needham SA, Wang GX, Konstantinov K, et al. Electrochemical performance of Co[sub 3]O[sub 4]–C composite anode materials. Electrochem Solid-State Lett. 2006;9(7):A315. doi: 10.1149/1.2197108
  • Prakasam HE, Varghese OK, Paulose M, et al. Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnol. 2006;17(17):4285. doi: 10.1088/0957-4484/17/17/001
  • Miller EL, Paluselli D, Marsen B, et al. Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films. 2004;466(1–2):307–313. doi: 10.1016/j.tsf.2004.02.093
  • Cesar I, Kay A, Martinez JAG, et al. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J Am Chem Soc. 2006;128(14):4582–4583. doi: 10.1021/ja060292p
  • Wang X, Chen X, Gao L, et al. Synthesis of β-FeOOH and α-Fe2O3nanorods and electrochemical properties of β-FeOOH. J Mater Chem. 2004;14(5):905–907. doi: 10.1039/B310722A
  • Fu YY, Wang RM, Xu J, et al. Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem Phys Lett. 2003;379(3–4):373–379. doi: 10.1016/j.cplett.2003.08.061
  • Tang B, Wang G, Zhuo L, et al. Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg Chem. 2006;45(13):5196–5200. doi: 10.1021/ic060097b
  • Abdulsada FM, Hussein NN, Sulaiman GM, et al. Evaluation of the antibacterial properties of iron oxide, polyethylene glycol, and gentamicin conjugated nanoparticles against some multidrug-resistant bacteria. J Funct Biomater. 2022;13(3):138. doi: 10.3390/jfb13030138
  • Al-Abboodi A, Albukhaty S, and Sulaiman G, et al. Protein conjugated superparamagnetic iron oxide nanoparticles for efficient vaccine delivery systems. Plasmonics. 2024;19:379–388. doi: 10.1007/s11468-023-01994-8
  • Shameli K, Ahmad MB, Zamanian A, et al. Green biosynthesis of silver nanoparticles using curcuma longa tuber powder. Int j nanomed. 2012;7:5603–5610. doi: 10.2147/IJN.S36786
  • Loo YY, Chieng BW, Nishibuchi M, et al. Synthesis of silver nanoparticles by using tea leaf extract from camellia sinensis. Int j nanomed. 2012;7:4263–4267. doi: 10.2147/IJN.S33344
  • Khan MI, Shah S, Faisal S, et al. Monotheca buxifolia driven synthesis of zinc oxide nano material its characterization and biomedical applications. Micromach. 2022;13(5):668. doi: 10.3390/mi13050668
  • Zafar S, Faisal S, Jan H, et al. Development of iron nanoparticles (FeNps) using biomass of Enterobacter: its characterization, antimicrobial, anti-Alzheimer’s, and enzyme inhibition potential. Micromach. 2022;13(8):1259. doi: 10.3390/mi13081259
  • Faisal S, Khan S, Abdullah S, et al. Fagonia cretica-mediated synthesis of manganese oxide (MnO2) nanomaterials their characterization and evaluation of their bio-catalytic and enzyme inhibition potential for maintaining flavor and texture in apples. Catalysts. 2022;12(5):558. doi: 10.3390/catal12050558
  • Abdullah N, Al-Radadi S, Hussain T, et al. Novel biosynthesis, characterization, and bio-catalytic potential of green algae (spirogyra hyalina) mediated silver nanomaterials. Saudi J Biol Sci. 2022;29(1):411–419. doi: 10.1016/j.sjbs.2021.09.013
  • Amjad R, Mubeen B, Ali SS, et al. Green Synthesis and characterization of copper nanoparticles using fortunella margarita leaves. Polymers. 2021;13(24):4364. doi: 10.3390/polym13244364
  • Shah R, Shah SA, Shah S, et al. Green Synthesis and antibacterial activity of gold nanoparticles of digera muricate. Indian J Pharm Sci. 2020;82(2):374–378. doi: 10.36468/pharmaceutical-sciences.659
  • Ullah R, Sumaira S, Zahir M, et al. In vitro and in vivo applications of euphorbia wallichii shoot extract-mediated gold nanospheres. Green Process Synth. 2021;10(1):101–111. doi: 10.1515/gps-2021-0013
  • Al-Radadi NS, Faisal AS, Alotaibi A, et al. Zingiber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-alzheimer, anti-oxidant, and anti-microbial applications. Inorg Chem Commun. 2022;140:109274. doi: 10.1016/j.inoche.2022.109274
  • Al-Radadi NS, Faisal S. Alotaibi, A. et al. Zingiber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-alzheimer, anti-oxidant, and anti-microbial applications. Inorg Chem Commun. 2022;140(109274):109274. doi: 10.1016/j.inoche.2022.109274
  • Faisal S, Abdullah HJ, Shah SA, et al. Bio-catalytic activity of novel mentha arvensis intervened biocompatible magnesium oxide nanomaterials. Catalysts. 2021;11(7):780. doi: 10.3390/catal11070780
  • Faisal S, Rizwan AM, Ullah A, et al. Paraclostridium benzoelyticum bacterium-mediated zinc oxide nanoparticles and their in vivo multiple biological applications. Oxid Med Cell Longevity. 2022;2022:1–15. doi: 10.1155/2022/5994033
  • Shah S, Shah SA, Faisal S, et al. Engineering novel gold nanoparticles using sageretia thea leaf extract and evaluation of their biological activities. J Nanostruct Chem. 2022;12:129–140. doi: 10.1007/s40097-021-00407-8
  • Faisal S, Al-Radadi NS, Jan H, et al. Curcuma longa mediated synthesis of copper oxide, nickel oxide and Cu-ni bimetallic hybrid nanoparticles: characterization and evaluation for antimicrobial, anti-parasitic and cytotoxic potentials. Coatings. 2021;11(7):849. doi: 10.3390/coatings11070849
  • Faisal S, Jan Abdullah H, Alam I, et al. In vivo analgesic, anti-inflammatory, and anti-diabetic screening of bacopa monnieri-synthesized copper oxide nanoparticles. ACS Omega. 2022;7(5):4071–4082. doi: 10.1021/acsomega.1c05410
  • Kainat MAK, Ali F, Faisal S, et al. Exploring the therapeutic potential of hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci. 2021;28(9):5157–5167. doi: 10.1016/j.sjbs.2021.05.035
  • Kainat MA, Khan F, Ali S, et al. Exploring the therapeutic potential of hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci. 2021;28(9):5157–5167. doi: 10.1016/j.sjbs.2021.05.035
  • Jan H, Shah M, Andleeb A, et al. Plant-based synthesis of Zinc oxide nanoparticles (ZnO-NPs) using aqueous leaf extract of aquilegia pubiflora: their antiproliferative activity against HepG2 cells inducing reactive oxygen species and other in vitro properties. Oxid Med Cell Longev. 2021;17:4786227. doi: 10.1155/2021/4786227
  • Faisal S, Khan MA, Jan H, et al. Edible mushroom (flammulina velutipes) as biosource for silver nanoparticles: from synthesis to diverse biomedical and environmental applications. Nanotechnology. 2021;32:065101. doi: 10.1088/1361-6528/abc2eb
  • Jan H, Khan MA, Usman H, et al. The aquilegia pubiflora (himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Adv. 2020;10(33):19219–19231. doi: 10.1039/D0RA01971B
  • Faisal S, Jan H, Shah SA, et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans Their Characterizations and biological and environmental applications. ACS Omega. 2021;6(14):9709–9722. doi: 10.1021/acsomega.1c00310
  • Faisal S, Ullah R, Alotaibi A, et al. Biofabrication of silver nanoparticles employing biomolecules of paraclostridium benzoelyticum strain: its characterization and their in-vitro antibacterial, anti-aging, anti-cancer and other biomedical applications. Microsc Res Tech. 2023;86(7):846–861. doi: 10.1002/jemt.24362
  • Faisal S, Tariq MH, Ullah R, et al. Exploring the antibacterial, antidiabetic, and anticancer potential of mentha arvensis extract through in-silico and in-vitro analysis. BMC Complement Med Ther. 2023;23:267. doi: 10.1186/s12906-023-04072-y
  • Imran M, Jan H, Faisal S, et al. In vitro examination of anti-parasitic, anti-alzheimer, insecticidal and cytotoxic potential of Ajuga bracteosa Wallich leaves extracts. Saudi J Biol Sci. 2021;28(5):3031–3036. doi: 10.1016/j.sjbs.2021.02.044
  • Choi JI, Cho HT, Jee MK, et al. Core-shell nanoparticle controlled hAtscs neurogenesis for neuropathic pain therapy. Biomater. 2013;34(21):4956–4970. doi: 10.1016/j.biomaterials.2013.02.037
  • Kim SR, Ho MJ, Kim SH, et al. Increased localized delivery of piroxicam by cationic nanoparticles after intra- articular injection. Drug Des Devel Ther. 2016;10:3779–3787. doi: 10.2147/DDDT.S118145
  • Xu GG, Zolotarskaya OY, Williams DA, et al. Nanoconjugated NAP as a potent and periphery selective mu opioid receptor modulator to treat opioid-induced constipation. ACS Med Chem Lett. 2017;8(1):78–83. doi: 10.1021/acsmedchemlett.6b00382
  • Rahman G, Joo OS. Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: influence of Pt doping on photoelectrochemical performance. Mater Chem Phys. 2013;140:316–322. doi: 10.1016/j.matchemphys.2013.03.042
  • Shi JB, Lee CW, Guo JW, et al. Optical and magnetic properties of elliptical hematite (α-Fe2O3) nanoparticles coated with uniform continuous layers of silica of different thickness. Mater Lett. 2007;61(30):5268–5270. doi: 10.1016/j.matlet.2007.04.045
  • Krehula S, Musi S. The influence of CD-dopant on the properties of α-FeOOH and α-Fe2O3 particles precipitated in highly alkaline media. J Alloys Compd. 2007;431(1–2):56–64. doi: 10.1016/j.jallcom.2006.05.081
  • Das R, Pachfule P, Banerjee R, et al. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale. 2012;4(2):591–599. doi: 10.1039/C1NR10944H
  • Lee JH, Ju JE, Kim BI, et al. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33:2759–2766. doi: 10.1002/etc.2735
  • Naqvi S, Samim M, Abdin M, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Nanomedicine. 2010;5:983–989. doi: 10.2147/IJN.S13244
  • Zhang Y, Wang Z, Li X, et al. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila. Adv Mater. 2016;28:1387–1393. doi: 10.1002/adma.201503893