Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Significant influence of heat input on microstructure evolution and mechanical properties of the simulated CGHAZ in a 1000 MPa grade ultra-high strength steel

, , , , &
Article: 2335426 | Received 06 Mar 2024, Accepted 22 Mar 2024, Published online: 01 Apr 2024

References

  • Wang L, Li J, Liu ZQ, et al. Towards strength-ductility synergy in nanosheets strengthened titanium matrix composites through laser power bed fusion of MXene/Ti composite powder. Mater Technol. 2023;38(1):2181680. doi: 10.1080/10667857.2023.2181680
  • Ning H, Li X, Meng L, et al. Effect of Ni and Mo on microstructure and mechanical properties of grey cast iron. Mater Technol. 2023;38(1):2172991. doi: 10.1080/10667857.2023.2172991
  • Misra RDK. Strong and ductile texture-free ultrafine-grained magnesium alloy via three-axial forging. Mater Lett. 2023;331:133443. doi: 10.1016/j.matlet.2022.133443
  • Weaver MR, Maldonado AJ, Banuelos JL, et al. On precipitation hardening behaviour in a triaxial forged Mg-2Zn-2Gd alloy and relationship to mechanical properties. Mater Technol. 2023;38(1):2215038. doi: 10.1080/10667857.2023.2215038
  • Misra RDK. Enabling manufacturing of multi-axial forging-induced ultrafine-grained strong and ductile magnesium alloys: a perspective of process-structure-property paradigm. Mater Technol. 2023;38(1):2189769. doi: 10.1080/10667857.2023.2189769
  • Yang C, Xu H, Wang Y, et al. Hot tearing analysis and process optimisation of the fire face of Al-cu alloy cylinder head based on MAGMA numerical simulation. Mater Technol. 2023;38(1):2165245. doi: 10.1080/10667857.2023.2165245
  • Li C, Chen J, Tu X, et al. Effect of finish rolling temperature on microstructures and mechanical properties of 1000 MPa grade tempered steel plate for hydropower station. J Manuf Process. 2021;67:1–13. doi: 10.1016/j.jmapro.2021.04.039
  • Chen J, Li C, Ren J, et al. Strength and toughness of Fe-1.2Mn-0.3Cr-1.4Ni-0.4Mo-C tempered steel plate in three cooling processes. Mater Sci Eng A. 2019;754:178–189. doi: 10.1016/j.msea.2019.03.029
  • Chen J, Li C, Ren J, et al. Evaluation of microstructure and mechanical properties of Fe-1.2Mn-0.3Cr-1.4Ni-0.4Mo-C steel welded joints. J Mater Res Technol. 2020;9(6):13793–13800. doi: 10.1016/j.jmrt.2020.09.135
  • Gao B, Xu T, Wang L, et al. Achieving a superior combination of tensile properties and corrosion resistance in AISI420 martensitic stainless steel by low-temperature tempering. Corros Sci. 2023;225:111551. doi: 10.1016/j.corsci.2023.111551
  • Zhang J, Xin W, Z G, et al. Effect of high heat input welding on the microstructures, precipitates and mechanical properties in the simulated coarse grained heat affected zone of a low carbon Nb-V-Ti-N microalloyed steel. Mater Charact. 2023;199:112849. doi: 10.1016/j.matchar.2023.112849
  • Misra RDK, Challa VSA, Injeti VSY. Phase reversion-induced nanostructured austenitic alloys: an overview. Mater Technol. 2022;37(7):437–449. doi: 10.1080/10667857.2022.2065621
  • Li Q, Zuo H, Feng J, et al. Strain rate and temperature sensitivity on the flow behaviour of a duplex stainless steel during hot deformation. Mater Technol. 2023;38(1):2166216. doi: 10.1080/10667857.2023.2166216
  • Tümer M, Schneider-Bröskamp C, Enzinger N. Fusion welding of ultra-high strength structural steels - a review. J Manuf Process. 2022;82:203–229. doi: 10.1016/j.jmapro.2022.07.049
  • Afkhami S, Javaheri V, Amraei M, et al. Thermomechanical simulation of the heat-affected zones in welded ultra-high strength steels: microstructure and mechanical properties. Mater Des. 2022;213:110336. doi: 10.1016/j.matdes.2021.110336
  • Ghafouri M, Amraei M, Pokka AP, et al. Mechanical properties of butt-welded ultra-high strength steels at elevated temperatures. J Constr Steel Res. 2022;198:107499. doi: 10.1016/j.jcsr.2022.107499
  • Guo L, Su X, Dai L, et al. Strain ageing embrittlement behaviour of X80 self-shielded flux-cored girth weld metal. Mater Technol. 2023;38(1):2164978. doi: 10.1080/10667857.2023.2164978
  • Buzzatti DT, Kanan LF, Dalpiaz G, et al. Effect of heat input and heat treatment on the microstructure and toughness of pipeline girth friction welded API 5L X65 steel. Mater Sci Eng A. 2022;833:142588. doi: 10.1016/j.msea.2021.142588
  • Tuncel O, Aydin H, Davut K. Effect of heat input on HAZ softening in fiber laser welding of 22MnB5 steel. Opt Laser Technol. 2023;164:109560. doi: 10.1016/j.optlastec.2023.109560
  • Gou J, Xing X, Cui G, et al. Effect of hydrogen on impact fracture of X80 steel weld: various heat inputs and coarse grain heat-affected zone. Mater Sci Eng A. 2023;886:145673. doi: 10.1016/j.msea.2023.145673
  • Nowacki J, Sajek A, Matkowski P. The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Arch Civ Mech Eng. 2016;16(4):777–783. doi: 10.1016/j.acme.2016.05.001
  • Chen L, Nie P, Qu Z, et al. Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800MPa grade high-strength low-alloy steel. J Manuf Process. 2020;50:132–141. doi: 10.1016/j.jmapro.2019.12.007
  • Zhang J, Cui K, Huang B, et al. Influence of heat input on the microstructure and mechanical properties of CLAM steel multilayer butt-welded joints. Fusion Eng Des. 2020;152:111413. doi: 10.1016/j.fusengdes.2019.111413
  • Wang C, Wang M, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Mater. 2008;58(6):492–495. doi: 10.1016/j.scriptamat.2007.10.053
  • Zhang C, Wang Q, Ren J, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater Sci Eng A. 2012;534:339–346. doi: 10.1016/j.msea.2011.11.078
  • Zhang J, Xin W, Luo G, et al. Effect of welding heat input on microstructural evolution, precipitation behavior and resultant properties of the simulated CGHAZ in high-N V-alloyed steel. Mater Charact. 2020;162:110201. doi: 10.1016/j.matchar.2020.110201
  • Niu G, Zurob HS, Misra RDK, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure. Acta Mater. 2022;226:117642. doi: 10.1016/j.actamat.2022.117642
  • Guo Z, Lee CS, Morris JW. On coherent transformations in steel. Acta Mater. 2004;52(19):5511–5518. doi: 10.1016/j.actamat.2004.08.011
  • Morris JW, Lee CS, Guo Z. The nature and consequences of coherent transformations in steel. ISIJ Int. 2003;43(3):410–419. doi: 10.2355/isijinternational.43.410
  • Zhong Y, Xiao F, Zhang J, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel. Acta Mater. 2006;54(2):435–443. doi: 10.1016/j.actamat.2005.09.015
  • Hu B, Shi G, Wang Q, et al. Elucidating the heat input on CGHAZ microstructure and its irregular effect on impact toughness for a novel V-N microalloying weathering steel. J Mater Res Technol. 2023;25:5888–5906. doi: 10.1016/j.jmrt.2023.07.086
  • Li X, Li C, Cao N, et al. Crystallography of reverted austenite in the intercritically reheated coarse-grained heat-affected zone of high strength pipeline steel. Acta Metall Sin. 2021;57(8):967–976.
  • Gao Z, Dong X, Yu J, et al. Unraveling the mechanism of toughness fluctuation in ultra-high-strength casing from the perspective of crystallography. Metals. 2024;14(2):14020208. doi: 10.3390/met14020208