Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of precursor solution temperature on the morphology and electrochemical performance of electrodeposited MnO2 nanofilms for lithium-ion batteries

, , , &
Article: 2342737 | Received 14 Dec 2023, Accepted 28 Mar 2024, Published online: 05 May 2024

References

  • Baxter J, Bian Z, Chen G, et al. Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci. 2009;2(6):559. doi: 10.1039/b821698c
  • Yoon J, Choi W, Kim T, et al. Reaction mechanism and additional lithium storage of mesoporous MnO2 anode in Li batteries. J Energy Chem. 2021;53:276–8. doi: 10.1016/j.jechem.2020.05.029
  • Li C, Zhang X, Wang K, et al. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors[J]. J Energy Chem. 2021;54:352–367. doi: 10.1016/j.jechem.2020.05.058
  • Bradley D. Building better batteries[J]. Education In Chemistry. 2010;47(4):124–125.
  • Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–935. doi: 10.1126/science.1212741
  • Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104(10):4245–4270. doi: 10.1021/cr020730k
  • Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4:3243.
  • Li H. Fundamental sciences of lithium battery[M]. Beijing: Chemical Industry Press; 2021. pp. 22–23.
  • Alkali ions pre-intercalation and reduced graphene coating of MnO2 for high-capacity Li-ion battery.
  • Luo CG, Chen Y, Tian QH, et al. Ultrathin porous MnO2@C nanosheets for high-performance lithium-ion battery anodes. J Electroanal Chem. 2023;930:117173. doi: 10.1016/j.jelechem.2023.117173
  • Yu JX, Wang L, Su L, et al. Temperature effects on the electrodeposition of Zinc. J Electrochem Soc. 2002;150(1):C19.
  • Wang XL, Fan XY, Li G, et al. Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors[J]. Vol. 93, Carbon; 2015 pp. 258–265.
  • Liu JX, Wang JQ, Ni YX, et al. Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries. Small Methods. 2019;3(12):1900350. doi: 10.1002/smtd.201900350
  • Wu YK, Li XJ, Xiao QZ, et al. The coaxial MnO2/CNTs nanocomposite freestanding membrane on SSM substrate as anode materials in high performance lithium ion batteries. J Electroanal Chem. 2019;834:161–166. doi: 10.1016/j.jelechem.2019.01.001
  • Li XL, Zhang YL, Zhong QN, et al. Surface decoration with MnO2 nanoplatelets on graphene/TiO2(B) hybrids for rechargeable lithium-ion batteries. Appl Surface Sci. 2014;313:877–882.
  • Min X, Guo MM, Li K, et al. Performance of toluene oxidation on different morphologies of α-MnO2 prepared using manganese-based compound high-selectively recovered from spent lithium-ion batteries. Environ Res. 2022;215:114299. doi: 10.1016/j.envres.2022.114299
  • Kong S, Gong YN, Liu P, et al. Synthesis of lithium rich layered oxides with controllable structures through a MnO2 template strategy as advanced cathode materials for lithium ion batteries. Ceram Int. 2019;45(10):13011–13018.
  • Zheng LL, Liu Y, Lan JL, et al. Hierarchical heterostructure of interconnected ultrafine MnO2 nanosheets grown on carbon-coated MnO nanorods toward high-performance lithium-ion batteries. Chem Eng J. 2017;330:1289–1296. doi: 10.1016/j.cej.2017.07.153
  • Wang H, Hao W, Li T, et al. Elucidating the mechanism underlying the augmented capacity of MoO2 as an anode material in Li-ion batteries. J Mater Chem A. 2023;11(42):23012–23025. doi: 10.1039/D3TA04794F
  • Xiao X, Zhang Z, Wu Y, et al. Ultrahigh-loading manganese-based electrode for aqueous battery via polymorph tuning. Adv Mater. 2023;35(33):2211555. doi: 10.1002/adma.202211555
  • Min X, Guo MM, Liu LZ, et al. Synthesis of MnO2 derived from spent lithium-ion batteries via advanced oxidation and its application in VOCs oxidation. J Hazard Mater. 2021;406:124743. doi: 10.1016/j.jhazmat.2020.124743
  • Yang YL, Ma GZ, Huang JX, et al. Hollow MnO2 spheres/porous reduced graphene oxide as a cathode host for high-performance lithium-sulfur batteries. J Solid State Chem. 2020;286:121297.
  • Moazzen E, Kucuk K, Aryal S, et al. Nanoscale MnO2 cathodes for Li-ion batteries: effect of thermal and mechanical processing. J Power Sources. 2020;448:227374. doi: 10.1016/j.jpowsour.2019.227374