Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
284
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of volume ratios on the novel Solanum lycopersicum leaf extract-mediated production of ZnO and Co3O4 nanoparticles for potential antifungal applications

, &
Article: 2345538 | Received 10 Nov 2023, Accepted 16 Apr 2024, Published online: 01 May 2024

References

  • Mulatu A, Megersa N, Tolcha T, et al. Antifungal compounds, GC-MS analysis and toxicity assessment of methanolic extracts of trichoderma species in an animal model. PLOS ONE [Internet]. 2022;17(9):1–13. doi: 10.1371/journal.pone.0274062
  • Raman Ibrahim NBB, Puchooa D, Govinden-Soulange J, et al. Publisher correction: first report of Cladosporium tenuissimum causing leaf spots on Solanum lycopersicum in Mauritius. Indian Phytopathol. 2023;76(2):669–671. doi: 10.1007/s42360-023-00615-y
  • Saraswat S, Singh P, Kumar M, et al. Advanced detection of fungi-bacterial diseases in plants using modified deep neural network and DSURF. Multimed Tools Appl [Internet]. 2023;83(6):16711–16733. doi: 10.1007/s11042-023-16281-1
  • Garvey M, Rowan NJ. Pathogenic drug resistant fungi: a review of mitigation strategies. Int J Mol Sci [Internet]. 2023;24(2):1584. doi: 10.3390/ijms24021584
  • Huang T, Li X, Maier M, et al. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater [Internet]. 2023;158:56–79. doi: 10.1016/j.actbio.2023.01.019
  • Ahmadpour Kermani S, Salari S, Ghasemi Nejad Almani P. Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different candida species: in vitro evaluation. J Clin Lab Anal [Internet]. 2021;35(1):1–8. doi: 10.1002/jcla.23577
  • Ali M, Wang X, Haroon U, et al. Antifungal activity of zinc nitrate derived nano zno fungicide synthesized from trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicol Environ Saf [Internet]. 2022;233:113311. doi: 10.1016/j.ecoenv.2022.113311
  • Waris A, Din M, Ali A, et al. Green fabrication of Co and Co 3 O 4 nanoparticles and their biomedical applications: a review. Open Life Sci [Internet]. 2021;16(1):14–30. doi: 10.1515/biol-2021-0003
  • Zahoor S, Sheraz S, Shams DF, et al. Biosynthesis and anti-inflammatory activity of zinc oxide nanoparticles using leaf extract of Senecio chrysanthemoides. Biomed Res Int. 2023;2023:1–8. doi: 10.1155/2023/3280708
  • Dönmez S. Green synthesis of zinc oxide nanoparticles using Zingiber officinale root extract and their applications in glucose biosensor. El-Cezeri J Sci Eng. 2020;7:1191–1200.
  • Ashraf H, Batool T, Anjum T, et al. Antifungal potential of green synthesized magnetite nanoparticles black coffee–magnetite nanoparticles against wilt infection by ameliorating enzymatic activity and gene expression in Solanum lycopersicum L. Front Microbiol. 2022;13:1–23.
  • Bigot S, Leclef C, Rosales C, et al. Comparison of the salt resistance of Solanum lycopersicum x Solanum chilense hybrids and their parents. Front Hortic. 2023;2:1–17. doi: 10.3389/fhort.2023.1130702
  • Perveen K, Alfagham AT, Debnath S, et al. Enriching drought resistance in Solanum lycopersicum using abscisic acid as drought enhancer derived from Lygodium japonicum: a new-fangled computational approach. Front Plant Sci. 2023;14:1–9. doi: 10.3389/fpls.2023.1106857
  • Elbrolesy A, Abdou Y, Elhussiny FA, et al. Novel green synthesis of UV-Sunscreen ZnO nanoparticles using Solanum lycopersicum fruit extract and evaluation of their antibacterial and anticancer activity. J Inorg Organomet Polym Mater [Internet]. 2023;33(12):3750–3759. doi: 10.1007/s10904-023-02744-3
  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, et al. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult [Internet]. 2015;120(3):881–902. doi: 10.1007/s11240-014-0664-4
  • Ramesh P, Saravanan K, Manogar P, et al. Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens Bio-Sensing Res [Internet]. 2021;31:100399. doi: 10.1016/j.sbsr.2021.100399.
  • Abdelbaky AS, Mohamed AMHA, Sharaky M, et al. Green approach for the synthesis of ZnO nanoparticles using Cymbopogon citratus aqueous leaf extract: characterization and evaluation of their biological activities. Chem Biol Technol Agric. 2023;10(1):63. doi: 10.1186/s40538-023-00432-5
  • Demissie MG, Sabir FK, Edossa GD, et al. Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (Koseret) and evaluation of its antibacterial activity. J Chem. 2020;2020:1–9. doi: 10.1155/2020/7459042
  • Tilahun E, Adimasu Y, Dessie Y. Biosynthesis and optimization of ZnO nanoparticles using Ocimum lamifolium leaf extract for electrochemical sensor and antibacterial activity. ACS Omega [Internet]. 2023;8(30):27344–27354. doi: 10.1021/acsomega.3c02709
  • Pagar T, Ghotekar SK, Pansambal S. A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications. J Chem Rev [Internet]. 2019;1:260–270. Available from: http://www.jchemrev.com/article_93601.html
  • Bibi I, Nazar N, Iqbal M, et al. Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Adv Powder Technol [Internet]. 2017;28(9):2035–2043. doi: 10.1016/j.apt.2017.05.008
  • Ardeshirfard H, Elhamifar D. An efficient method for the preparation of magnetic Co3O4 nanoparticles and the study of their catalytic application. Front Catal [Internet]. 2023;3:2–11. Available from: https://www.frontiersin.org/articles/10.3389/fctls.2023.1194977/full
  • Omran BA, Nassar HN, Younis SA, et al. Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404—optimization, characterization and antimicrobial activity. J Appl Microbiol [Internet]. 2020;128(2):438–457. doi: 10.1111/jam.14498
  • Sharma J, Sweta S, Thakur C, et al. Green synthesis of zinc oxide nanoparticles using neem extract. AIP Conf Proc [Internet]. 2020;020107. Available from: https://pubs.aip.org/aip/acp/article/1001922
  • Asha G, Rajeshwari V, Stephen G, et al. Eco-friendly synthesis and characterization of cobalt oxide nanoparticles by sativum species and its photo-catalytic activity. Mater Today Proc [Internet]. 2022;48:486–493. doi: 10.1016/j.matpr.2021.02.338
  • Shaheen I, Ahmad KS, Zequine C, et al. Green synthesis of ZnO–co 3 O 4 nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. New J Chem [Internet]. 2020;44(42):18281–18292. doi: 10.1039/D0NJ03430D
  • Maru MT, Gonfa BA, Zelekew OA, et al. Effect of Musa acuminata peel extract on synthesis of ZnO/CuO nanocomposites for photocatalytic degradation of methylene blue. Green Chem Lett Rev [Internet]. 2023;16(1): doi: 10.1080/17518253.2023.2232383
  • Saeed SY, Raees L, Mukhtiar A, et al. Green synthesis of cobalt oxide nanoparticles using roots extract of Ziziphus Oxyphylla Edgew its characterization and antibacterial activity. Mater Res Express. 2022;9(10):105001. doi: 10.1088/2053-1591/ac9350
  • Prakash A, Sur S, Dave V, et al. Green synthesized cobalt nanoparticles from Trianthema portulacastrum L. as a novel antimicrobials and antioxidants. Prep Biochem Biotechnol [Internet]. 2023;2220:1–15. doi: 10.1080/10826068.2023.2238306.
  • Bekele ET, Murthy HCA, Muniswamy D, et al. Solanum tuberosum leaf extract templated synthesis of Co3O4 nanoparticles for electrochemical sensor and antibacterial applications. Pandian S, editor. Bioinorg Chem Appl [Internet]. 2022;2022:1–15. Available from: https://www.hindawi.com/journals/bca/2022/8440756/
  • Ikhuoria EU, Omorogbe SO, Sone BT, et al. Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: a facile green synthesis using manihot esculenta Crantz extract. Sci Technol Mater [Internet]. 2018;30:92–98. doi: 10.1016/j.stmat.2018.02.003.
  • Mini R, Prabhu V, Poonkodi K, et al. green synthesis of silver nanoparticles from scoparia dulcis L. plant extract and its in-vitro acetylcholinesterase, antioxidant activity. Rasayan J Chem [Internet]. 2023;16(1):214–222. doi: 10.31788/RJC.2023.1618075
  • Elshafie HS, Osman A, El-Saber MM, et al. Antifungal activity of green and chemically synthesized ZnO nanoparticles against Alternaria citri, the causal agent citrus black rot. Plant Pathol J. 2023;39(3):265–274. doi: 10.5423/PPJ.OA.02.2023.0035
  • Ghdeeb NJ, Ali Hussain N. Antimicrobial activity of ZnO nanoparticles prepared using a green synthesis approach. Nano Biomed Eng. 2023;15(1):14–20. doi: 10.26599/NBE.2023.9290003
  • Pillai AM, Sivasankarapillai VS, Rahdar A, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct [Internet]. 2020;1211:128107. doi: 10.1016/j.molstruc.2020.128107
  • Waris A, Din M, Ali A, et al. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: a review. Open life sci. 2021;16(1):14–30. doi: 10.1515/biol-2021-0003
  • Umavathi S, Mahboob S, Govindarajan M, et al. Green synthesis of ZnO nanoparticles for antimicrobial and vegetative growth applications: a novel approach for advancing efficient high quality health care to human wellbeing. Saudi J Biol Sci [Internet]. 2021;28:1808–1815. doi: 10.1016/j.sjbs.2020.12.025.
  • Gowthami P, Kosiha A, Meenakshi S, et al. Biosynthesis of Co3O4 nanomedicine by using mollugo oppositifolia L. aqueous leaf extract and its antimicrobial, mosquito larvicidal activities. Sci Rep. 2023;13:9002. doi: 10.1038/s41598-023-35877-z.