Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomechanical analysis of 3D printed porous extremely-low modulus Ti-24Nb-4Zr-8Sn lumbar interbody fusion cage-A finite element study

, , , &
Article: 2345960 | Received 31 Mar 2024, Accepted 17 Apr 2024, Published online: 01 May 2024

References

  • de Kunder SL, Rijkers K, Caelers I, et al. Lumbar interbody fusion: a historical overview and a future perspective. Spine (Phila Pa 1976). 2018;43(16):1161–12. doi: 10.1097/BRS.0000000000002534
  • Seaman S, Kerezoudis P, Bydon M, et al. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 2017;44:23–29. doi: 10.1016/j.jocn.2017.06.062
  • Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine (Phila Pa 1976). 2006;31(26):E992–8. doi: 10.1097/01.brs.0000250177.84168.ba
  • Walsh WR, Pelletier MH, Christou C, et al. The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant. Spine J. 2018;18(7):1231–1240. doi: 10.1016/j.spinee.2018.02.017
  • Walsh WR, Bertollo N, Christou C, et al. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J. 2015;15(5):1041–1049. doi: 10.1016/j.spinee.2014.12.018
  • Olivares-Navarrete R, Gittens RA, Schneider JM, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012;12(3):265–272. doi: 10.1016/j.spinee.2012.02.002
  • Olivares-Navarrete R, Hyzy SL, Slosar PJ, et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine (Phila Pa 1976). 2015;40(6):399–404. doi: 10.1097/BRS.0000000000000778
  • Nemoto O, Asazuma T, Yato Y, et al. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014;23(10):2150–2155. doi: 10.1007/s00586-014-3466-9
  • Mukherjee S, Dhara S, Saha P. Laser surface remelting of Ti and its alloys for improving surface biocompatibility of orthopaedic implants. Mater Technol. 2018;33(2):106–118. doi: 10.1080/10667857.2017.1390931
  • Wang Z, Yao R, Wang D, et al. Structure design and biological evaluation of the mechanical-adaptive titanium-based porous implants. Mater Technol. 2021;36(14):851–856. doi: 10.1080/10667857.2020.1800306
  • Rao PJ, Pelletier MH, Walsh WR, et al. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014;6(2):81–89. doi: 10.1111/os.12098
  • Tsou HK, Chi MH, Hung YW, et al. In vivo osseointegration performance of titanium dioxide coating modified polyetheretherketone using arc ion plating for spinal implant application. Biomed Res Int. 2015;2015:328943. doi: 10.1155/2015/328943
  • Zhao S, Li SJ, Hou WT, et al. Microstructure and mechanical properties of open cellular Ti–6Al–4V prototypes fabricated by electron beam melting for biomedical applications. Mater Technol. 2016;31(2):98–107. doi: 10.1179/1753555715Y.0000000056
  • Zhu LY, Li L, Li ZA, et al. Design and biomechanical characteristics of porous meniscal implant structures using triply periodic minimal surfaces. J Transl Med. 2019;17(1):89. doi: 10.1186/s12967-019-1834-2
  • Song K, Wang Z, Lan J, et al. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J Mech Behav Biomed Mater. 2021;115:104222. doi: 10.1016/j.jmbbm.2020.104222
  • Hao YL, Li SJ, Sun SY, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277–286. doi: 10.1016/j.actbio.2006.11.002
  • Mahajan A, Sidhu SS. Surface modification of metallic biomaterials for enhanced functionality: a review. Mater Technol. 2018;33(2):93–105. doi: 10.1080/10667857.2017.1377971
  • Zhang Z, Li H, Fogel GR, et al. Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis. World Neurosurg. 2018;111:e581–e591. doi: 10.1016/j.wneu.2017.12.127
  • Wu Y, Chen CH, Tsuang FY, et al. The stability of long-segment and short-segment fixation for treating severe burst fractures at the thoracolumbar junction in osteoporotic bone: a finite element analysis. PLOS ONE. 2019;14(2):e0211676. doi: 10.1371/journal.pone.0211676
  • Schilling C, Krüger S, Grupp TM, et al. The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J. 2011;20(2):297–307. doi: 10.1007/s00586-010-1620-6
  • Otsuki B, Takemoto M, Fujibayashi S, et al. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27(35):5892–5900. doi: 10.1016/j.biomaterials.2006.08.013
  • Tan XP, Tan YJ, Chow C, et al. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;76:1328–1343. doi: 10.1016/j.msec.2017.02.094
  • Li SJ, Xu QS, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537–4547. doi: 10.1016/j.actbio.2014.06.010
  • Yang HX, Li SJ, Hou WT, et al. Recoverable strain in a new biomedical Ti-24Nb-4Zr-8Sn alloy with cellular structure fabricated by electron beam melting. Mater Technol Mat Technol. 2020;35(13–14):881–886. doi: 10.1080/10667857.2019.1709287
  • Hansen U, Zioupos P, Simpson R, et al. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng. 2008;130(1):011011. doi: 10.1115/1.2838032
  • Mobbs RJ, Phan K, Malham G, et al. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2–18. doi: 10.3978/j.issn.2414-469X.2015.10.05
  • Lee CK, Langrana NA. A review of spinal fusion for degenerative disc disease: need for alternative treatment approach of disc arthroplasty. Spine J. 2004;4(6 Suppl):173S–176S. doi: 10.1016/j.spinee.2004.07.002
  • Huang G, Pan ST, Qiu JX. The clinical application of porous tantalum and its new development for bone tissue engineering. Materials. 2021;14(10):2647. doi: 10.3390/ma14102647
  • Dziaduszewska M, Zieliński A. Structural and material determinants influencing the behavior of porous Ti and its alloys made by additive manufacturing techniques for biomedical applications. Materials. 2021;14(4):712. doi: 10.3390/ma14040712
  • Cheng A, Humayun A, Cohen DJ, et al. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication. 2014;6(4):045007. doi: 10.1088/1758-5082/6/4/045007
  • Markhoff J, Wieding J, Weissmann V, et al. Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations. Materials. 2015;8(8):5490–5507. doi: 10.3390/ma8085259
  • Lekovic GP, Han PP, Kenny KJ, et al. Bone dowels in anterior lumbar interbody fusion. J Spinal Disord Tech. 2007;20(5):374–379. doi: 10.1097/BSD.0b013e31802c1462
  • Disch AC, Schmoelz W, Matziolis G, et al. Higher risk of adjacent segment degeneration after floating fusions: long-term outcome after low lumbar spine fusions. J Spinal Disord Tech. 2008;21(2):79–85. doi: 10.1097/BSD.0b013e3180577259
  • Schulte TL, Leistra F, Bullmann V, et al. Disc height reduction in adjacent segments and clinical outcome 10 years after lumbar 360 degrees fusion. Eur Spine J. 2007;16(12):2152–2158. doi: 10.1007/s00586-007-0515-7
  • Nakase H, Park YS, Kimura H, et al. Complications and long-term follow-up results in titanium mesh cage reconstruction after cervical corpectomy. J Spinal Disord Tech. 2006;19(5):353–357. doi: 10.1097/01.bsd.0000210113.09521.aa
  • Chen B, Li Y, Xie D, et al. Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J Orthop Res. 2012;30(5):733–739. doi: 10.1002/jor.22004
  • Consolo U, Travaglini D, Todisco M, et al. Histologic and biomechanical evaluation of the effects of implant insertion torque on peri-implant bone healing. J Craniofac Surg. 2013;24(3):860–865. doi: 10.1097/SCS.0b013e31827ca3cf
  • Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab. 2000;18(6):305–316. doi: 10.1007/s007740070001
  • Chatham LS, Patel YC VV, Dana Carpenter R. Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. J Biomech Eng. 2017;139(5):0510051–8. doi: 10.1115/1.4036312
  • McCaffrey K, MH M, Pelletier MH, et al. Load sharing and endplate pressure distribution in anterior interbody fusion influenced by graft choice. World Neurosurg. 2021;146:e336–e340. doi: 10.1016/j.wneu.2020.10.084
  • Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res. 1993;27(2):167–175. doi: 10.1002/jbm.820270205
  • Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;208(&NA;):108–113. doi: 10.1097/00003086-198607000-00023
  • Nune KC, Misra RDK, Li SJ, et al. Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy. Dent Mater. 2017;33(2):152–165. doi: 10.1016/j.dental.2016.11.005