Publication Cover
Materials Technology
Advanced Performance Materials
Volume 39, 2024 - Issue 1
121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A type of brain-targeting nano-formulation and its anti-tumour effect in paediatric brain tumour cells

, , , , , , , , , , & show all
Article: 2352675 | Received 01 Feb 2024, Accepted 26 Apr 2024, Published online: 13 May 2024

References

  • Malbari F. Pediatric Neuro-Oncology. Neurol Clin. 2021 Aug;39(3):829–14. doi: 10.1016/j.ncl.2021.04.005.
  • Jalali R, Goda JS. Proton beam therapy in pediatric brain tumor patients: improved radiation delivery techniques improve neurocognitive outcomes. Neuro Oncol. 2019;21(7):830–831. doi: 10.1093/neuonc/noz085
  • Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24(25):4202–4208. doi: 10.1200/JCO.2006.06.4980
  • Wisoff JH, Sanford RA, Heier LA, et al. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi–institutional study from the Children’s Oncology Group. Neurosurgery. 2011;68(6):1548–1555; discussion 54-5. 10.1227/NEU.0b013e318214a66e
  • Fang FY, Rosenblum JS, Ho WS, et al. New developments in the pathogenesis, therapeutic targeting, and treatment of pediatric medulloblastoma. Cancers (Basel). 2022;14(9):2285. doi: 10.3390/cancers14092285
  • Langen UH, Ayloo S, Gu C. Development and cell biology of the blood-brain barrier. Annu Rev Cell Dev Biol. 2019;35(1):591–613. doi: 10.1146/annurev-cellbio-100617-062608
  • Power EA, Rechberger JS, Gupta S, et al. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors - an update. Adv Drug Delivery Rev. 2022;185:114303. doi: 10.1016/j.addr.2022.114303
  • Jin G, Jin M, Yin X, et al. A comparative study on the effect of docetaxel-albumin nanoparticles and docetaxel-loaded PEG-albumin nanoparticles against non-small cell lung cancer. Int J Oncol. 2015;47(5):1945–1953. doi: 10.3892/ijo.2015.3174
  • Ibrahim M, Shimizu T, Ando H, et al. Investigation of anti-PEG antibody response to PEG-containing cosmetic products in mice. JControlled Release. 2023;354:260–267. doi: 10.1016/j.jconrel.2023.01.012
  • Dobrovolskaia MA, Aggarwal P, Hall JB, et al. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharmaceutics. 2008;5(4):487–495. doi: 10.1021/mp800032f
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics. 2008;5(4):505–515. doi: 10.1021/mp800051m
  • Bertrand N, Grenier P, Mahmoudi M, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun. 2017;8(1):777. doi: 10.1038/s41467-017-00600-w
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Targeting. 2002;10(4):317–325. doi: 10.1080/10611860290031877
  • Burkhart A, Andresen TL, Aigner A, et al. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain. Cell Mol Life Sci. 2017;74(13):2467–2485. doi: 10.1007/s00018-017-2501-5
  • Wilson B, Samanta MK, Santhi K, et al. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2008;70(1):75–84. doi: 10.1016/j.ejpb.2008.03.009
  • Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics. 2018;8(8):2264–2277. doi: 10.7150/thno.23734
  • Pavlov R, Romanova E, Kuznetsov D, et al. The formation of morphologically stable lipid nanocarriers for glioma therapy. Int J Mol Sci. 2023;24(4):3632. doi: 10.3390/ijms24043632
  • Jain A, Jain A, Garg NK, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer. Acta Biomaterialia. 2015;24:140–151. doi: 10.1016/j.actbio.2015.06.027
  • Vanbilloen WJF, Rechberger JS, Anderson JB, et al. Nanoparticle strategies to improve the delivery of anticancer drugs across the blood–brain barrier to treat brain tumors. Pharmaceutics. 2023;15(7):1804. doi: 10.3390/pharmaceutics15071804
  • Hill BT. Vinflunine, a second generation novel vinca alkaloid with a distinctive pharmacological profile, now in clinical development and prospects for future mitotic blockers. CPD. 2001;7(13):1199–1212. doi: 10.2174/1381612013397456
  • Golpayegani MR, Akramipour R, Gheini S, et al. Sensitive determination of vincristine in plasma of children with leukaemia using vortex-assisted dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent. RSC Adv. 2022;12(6):3611–3617. doi: 10.1039/D1RA07981F
  • Ruoslahti E. Drug targeting to specific vascular sites. Drug Discovery Today. 2002;7(22):1138–1143. doi: 10.1016/S1359-6446(02)02501-1
  • Mazzone M, Bergers G. Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu Rev Physiol. 2019;81(1):535–560. doi: 10.1146/annurev-physiol-020518-114721
  • Obireddy SR, Lai WF. Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Delivery. 2021;28(1):1562–1568. doi: 10.1080/10717544.2021.1955043
  • Fu X, Rehman U, Wei L, et al. Silver-dendrimer nanocomposite as emerging therapeutics in anti-bacteria and beyond. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy. Drug Resist Updat. 2023;68:100935. doi: 10.1016/j.drup.2023.100935
  • Cheng X, Pei X, Xie W, et al. pH-triggered size-tunable silver nanoparticles: targeted aggregation for effective bacterial infection therapy. Small. 2022;18(22):e2200915. doi: 10.1002/smll.202200915
  • Lv S, Sylvestre M, Song K, et al. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076. doi: 10.1016/j.biomaterials.2021.121076
  • Gandhi S, Shende P. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy. JControlled Release. 2021;339:41–50. doi: 10.1016/j.jconrel.2021.09.025
  • Tang W, Wan S, Yang Z, et al. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics (Oxford, England). 2018;34(3):398–406. doi: 10.1093/bioinformatics/btx622
  • Arkaban H, Barani M, Akbarizadeh MR, et al. Polyacrylic acid nanoplatforms: antimicrobial, tissue engineering, and cancer theranostic applications. Polymers. 2022;14(6):1259. doi: 10.3390/polym14061259
  • Tao X, Xie Y, Zhang Q, et al. Cholesterol-modified amino-pullulan nanoparticles as a drug carrier: comparative study of cholesterol-modified carboxyethyl pullulan and pullulan nanoparticles. Nanomaterials (Basel). 2016;6(9):165. doi: 10.3390/nano6090165
  • Tao X, Zhang Q, Ling K, et al. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles. PLOS ONE. 2012;7(11):e49304. doi: 10.1371/journal.pone.0049304
  • Castelletto V, Hamley IW. Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution. Biophys Chem. 2009;141(2–3):169–174. doi: 10.1016/j.bpc.2009.01.008
  • Constantin M, Bucatariu S, Sacarescu L, et al. Pullulan derivative with cationic and hydrophobic moieties as an appropriate macromolecule in the synthesis of nanoparticles for drug delivery. Int j biol macromol. 2020;164:4487–4498. doi: 10.1016/j.ijbiomac.2020.09.064
  • Tao X, Tao T, Wen Y, et al. Novel delivery of mitoxantrone with hydrophobically modified pullulan nanoparticles to inhibit bladder cancer cell and the effect of nano-drug size on inhibition efficiency. Nanoscale Res Lett. 2018;13(1):345. doi: 10.1186/s11671-018-2769-x
  • Yuan L, Cao Y, Luo Q, et al. Pullulan-based nanoparticle-HSA complex formation and drug release influenced by surface charge. Nanoscale Res Lett. 2018;13(1):317. doi: 10.1186/s11671-018-2729-5
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nature Nanotechnol. 2012;7(6):383–388. doi: 10.1038/nnano.2012.45
  • Roy S, Bag N, Bardhan S, et al. Recent progress in NIR-II fluorescence imaging-guided drug delivery for cancer theranostics. Adv Drug Delivery Rev. 2023;197:114821. doi: 10.1016/j.addr.2023.114821
  • Egloff-Juras C, Bezdetnaya L, Dolivet G, et al. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomed. 2019;14:7823–7838. doi: 10.2147/IJN.S207486
  • Dai Y, Su J, Wu K, et al. Multifunctional thermosensitive liposomes based on natural phase-change material: near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl Mater Interfaces. 2019;11(11):10540–10553. doi: 10.1021/acsami.8b22748
  • Iannone M, Cosco D, Cilurzo F, et al. A novel animal model to evaluate the ability of a drug delivery system to promote the passage through the BBB. Neurosci lett. 2010;469(1):93–96. doi: 10.1016/j.neulet.2009.11.051
  • Wilson B, Samanta MK, Santhi K, et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–168. doi: 10.1016/j.brainres.2008.01.039
  • Chen H, Chen H, Liu L, et al. The study of improved controlled release of vincristine sulfate from collagen-chitosan complex film. Artif Cells Blood Substitutes Immobilization Biotechnol. 2008;36(4):372–385. doi: 10.1080/10731190802239057
  • Wang X, Song Y, Su Y, et al. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Delivery. 2016;23(4):1092–1100. doi: 10.3109/10717544.2015.1027015
  • Vincristine liposomal–INEX: lipid-encapsulated vincristine, onco TCS, transmembrane carrier system–vincristine, vincacine, vincristine sulfate liposomes for injection, VSLI. Drugs In R&D. 2004;5(2):119–123. doi: 10.2165/00126839-200405020-00012
  • Zhang W, Mehta A, Tong Z, et al. Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2021;8(10):2003937. doi: 10.1002/advs.202003937
  • Dong X, Wang W, Qu H, et al. Targeted delivery of doxorubicin and vincristine to lymph cancer: evaluation of novel nanostructured lipid carriers in vitro and in vivo. Drug Delivery. 2016;23(4):1374–1378. doi: 10.3109/10717544.2015.1041580