140
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in the antioxidant activity of metal-curcumin complexes: a combined computational and experimental review

, , , &
Pages 11-26 | Received 21 Aug 2023, Accepted 01 Dec 2023, Published online: 04 Jan 2024

References

  • Hao M, Chu Y, Lei J, et al. Pharmacological mechanisms and clinical applications of curcumin: update. Aging Dis. 2023;14(3):716–749. doi: 10.14336/AD.2022.1101.
  • Wanninger S, Lorenz V, Subhan A, et al. Metal complexes of curcumin–synthetic strategies, structures and medicinal applications. Chem Soc Rev. 2015;44(15):4986–5002. doi: 10.1039/C5CS00088B.
  • Shakeri A, Panahi Y, Johnston TP, et al. Biological properties of metal complexes of curcumin. Biofactors. 2019;45(3):304–317. doi: 10.1002/biof.1504.
  • Meza-Morales W, Alejo-Osorio Y, Alvarez-Ricardo Y, et al. Homoleptic complexes of heterocyclic curcuminoids with Mg (II) and Cu (II): first conformationally heteroleptic case, crystal structures, and biological properties. Molecules. 2023;28(3):1434. doi: 10.3390/molecules28031434.
  • Ferrari E, Benassi R, Sacchi S, et al. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications. J Inorg Biochem. 2014;139:38–48. doi: 10.1016/j.jinorgbio.2014.06.002.
  • Hegde M, Girisa S, BharathwajChetty B, et al. Curcumin formulations for better bioavailability: what we learned from clinical trials thus far? ACS Omega. 2023;8(12):10713–10746. doi: 10.1021/acsomega.2c07326.
  • Ferrari E. Curcumin derivatives as metal-chelating agents: implications for potential therapeutic agents for neurological disorders. In: Farooqui T, Farooqui AA, editors. Curcumin for neurological and psychiatric disorders. London: Academic Press; 2019. p. 275–299.
  • Malacaria L, Corrente GA, Beneduci A, et al. A review on coordination properties of Al (III) and Fe (III) toward natural antioxidant molecules: experimental and theoretical insights. Molecules. 2021;26(9):2603. doi: 10.3390/molecules26092603.
  • Bhattacharyya A, Chattopadhyay R, Mitra S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–354. doi: 10.1152/physrev.00040.2012.
  • Zhang Y, Khan AR, Fu M, et al. The progresses in curcuminoids-based metal complexes: especially in cancer therapy. Future Med Chem. 2019;11(9):1035–1056. doi: 10.4155/fmc-2018-0190.
  • Prasad S, DuBourdieu D, Srivastava A, et al. Metal–curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci. 2021;22(13):7094. doi: 10.3390/ijms22137094.
  • Hieu TQ, Thao DTT. Enhancing the solubility of curcumin metal complexes and investigating some of their biological activities. J Chem. 2019;2019:1–8. doi: 10.1155/2019/8082195.
  • Barik A, Mishra B, Kunwar A, et al. Comparative study of copper (II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur J Med Chem. 2007;42(4):431–439. doi: 10.1016/j.ejmech.2006.11.012.
  • Bagchi D, Chaudhuri S, Sardar S, et al. Modulation of stability and functionality of a phyto-antioxidant by weakly interacting metal ions: curcumin in aqueous solution. RSC Adv. 2015;5(124):102516–102524. doi: 10.1039/C5RA21593E.
  • Horspool AM, Chang HC. Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis. Redox Biol. 2018;17:377–385. doi: 10.1016/j.redox.2018.05.007.
  • Wang J, Wang S. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism. Chem Eng J. 2020;401:126158. doi: 10.1016/j.cej.2020.126158.
  • Amalraj A, Pius A, Gopi S, et al. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–a review. J Tradit Complement Med. 2017;7(2):205–233. doi: 10.1016/j.jtcme.2016.05.005.
  • Sanphui P, Bolla G. Curcumin, a biological wonder molecule: a crystal engineering point of view. Crystal Growth Des. 2018;18(9):5690–5711. doi: 10.1021/acs.cgd.8b00646.
  • Meza-Morales W, Machado-Rodriguez JC, Alvarez-Ricardo Y, et al. A new family of homoleptic copper complexes of curcuminoids: synthesis, characterization and biological properties. Molecules. 2019;24(5):910. doi: 10.3390/molecules24050910.
  • Arenaza-Corona A, Obregón-Mendoza MA, Meza-Morales W, et al. The homoleptic curcumin–copper single crystal (ML2): a long awaited breakthrough in the field of curcumin metal complexes. Molecules. 2023;28(16):6033. doi: 10.3390/molecules28166033.
  • Halevas E, Pekou A, Papi R, et al. Synthesis, physicochemical characterization and biological properties of two novel Cu (II) complexes based on natural products curcumin and quercetin. J Inorg Biochem. 2020;208:111083. doi: 10.1016/j.jinorgbio.2020.111083.
  • Kareem A, Khan MS, Nami SA, et al. Curcumin derived Schiff base ligand and their transition metal complexes: synthesis, spectral characterization, catalytic potential and biological activity. J Mol Struct. 2018;1167:261–273. doi: 10.1016/j.molstruc.2018.05.001.
  • Festus C, Okafor SN, Ekennia AC. Heteroleptic metal complexes of a pyrimidinyl based schiff base ligand incorporating 2, 2′-bipyridine moiety: synthesis, characterization, and biological studies. Front Chem. 2019;7:862. doi: 10.3389/fchem.2019.00862.
  • Raczuk E, Dmochowska B, Samaszko-Fiertek J, et al. Different Schiff bases—structure, importance and classification. Molecules. 2022;27(3):787. doi: 10.3390/molecules27030787.
  • Călinescu M, Fiastru M, Bala D, et al. Synthesis, characterization, electrochemical behavior and antioxidant activity of new copper (II) coordination compounds with curcumin derivatives. J Saudi Chem Soc. 2019;23(7):817–827. doi: 10.1016/j.jscs.2019.02.006.
  • Kaur A, Banipal PK, Banipal TS. Study on the interactional behaviour of transition metal ions with myoglobin: a detailed calorimetric, spectroscopic and light scattering analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2017;174:236–244. doi: 10.1016/j.saa.2016.11.041.
  • Ye Q, Park JE, Gugnani K, et al. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9(8):1028–1046. doi: 10.1039/c7mt00079k.
  • Vajragupta O, Boonchoong P, Watanabe H, et al. Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity. Free Radic Biol Med. 2003;35(12):1632–1644. doi: 10.1016/j.freeradbiomed.2003.09.011.
  • Lü JM, Lin PH, Yao Q, et al. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840–860. doi: 10.1111/j.1582-4934.2009.00897.x.
  • Sumanont Y, Murakami Y, Tohda M, et al. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biol Pharm Bull. 2004;27(2):170–173. doi: 10.1248/bpb.27.170.
  • Matović V, Buha A, Ðukić-Ćosić D, et al. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol. 2015;78:130–140. doi: 10.1016/j.fct.2015.02.011.
  • Eybl V, Kotyzová D, Lesetický L, et al. The influence of curcumin and manganese complex of curcumin on cadmium‐induced oxidative damage and trace elements status in tissues of mice. J Appl Toxicol. 2006;26(3):207–212. doi: 10.1002/jat.1124.
  • Tran QH, Doan TT. A novel study on curcumin metal complexes: solubility improvement, bioactivity, and trial burn wound treatment in rats. New J Chem. 2020;44(30):13036–13045. doi: 10.1039/D0NJ01159B.
  • Zebib B, Mouloungui Z, Noirot V. Stabilization of curcumin by complexation with divalent cations in glycerol/water system. Bioinorg Chem Appl. 2010;2010:292760–292768. doi: 10.1155/2010/292760.
  • Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants. 2019;8(6):164. doi: 10.3390/antiox8060164.
  • Kumar A, Zafaryab M, Umar A, et al. Relief of oxidative stress using curcumin and glutathione functionalized ZnO nanoparticles in HEK-293 cell line. J Biomed Nanotechnol. 2015;11(11):1913–1926. doi: 10.1166/jbn.2015.2166.
  • Prasad S, Lall R. Zinc-curcumin based complexes in health and diseases: an approach in chemopreventive and therapeutic improvement. J Trace Elem Med Biol. 2022;73:127023. doi: 10.1016/j.jtemb.2022.127023.
  • Meza-Morales W, Alvarez-Ricardo Y, Obregón-Mendoza MA, et al. Three new coordination geometries of homoleptic Zn complexes of curcuminoids and their high antiproliferative potential. RSC Adv. 2023;13(13):8577–8585. doi: 10.1039/d3ra00167a.
  • Meza-Morales W, Estévez-Carmona MM, Alvarez-Ricardo Y, et al. Full structural characterization of homoleptic complexes of diacetylcurcumin with Mg, Zn, Cu, and Mn: cisplatin-level cytotoxicity in vitro with minimal acute toxicity in vivo. Molecules. 2019;24(8):1598. doi: 10.3390/molecules24081598.
  • Yan FS, Sun JL, Xie WH, et al. Neuroprotective effects and mechanisms of curcumin–Cu (II) and–Zn (II) complexes systems and their pharmacological implications. Nutrients. 2017;10(1):28. doi: 10.3390/nu10010028.
  • Yu YY, Chen SJ, Chen M, et al. Effect of cadmium-polluted diet on growth, salinity stress, hepatotoxicity of juvenile pacific white shrimp (Litopenaeus vannamei): protective effect of Zn (II)–curcumin. Ecotoxicol Environ Saf. 2016;125:176–183. doi: 10.1016/j.ecoenv.2015.11.043.
  • Lu WP, Mei XT, Wang Y, et al. Zn (II)–curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ Toxicol Pharmacol. 2015;39(2):515–524. doi: 10.1016/j.etap.2014.12.014.
  • Mei X, Xu D, Xu S, et al. Novel role of Zn (II)–curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers. Chem Biol Interact. 2012;197(1):31–39. doi: 10.1016/j.cbi.2012.03.006.
  • Yu C, Mei XT, Zheng YP, et al. Zn (II)–curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Environ Toxicol Pharmacol. 2014;37(2):729–737. doi: 10.1016/j.etap.2014.02.011.
  • Singh A, Dutta PK. Green synthesis, characterization and biological evaluation of chitin glucan based zinc oxide nanoparticles and its curcumin conjugation. Int J Biol Macromol. 2020;156:514–521. doi: 10.1016/j.ijbiomac.2020.04.081.
  • Wang H, Gong X, Guo X, et al. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int J Biol Macromol. 2019;121:1118–1125. doi: 10.1016/j.ijbiomac.2018.10.121.
  • Yildirim-Yalcin M, Tornuk F, Toker OS. Recent advances in the improvement of carboxymethyl cellulose-based edible films. Trends Food Sci Technol. 2022;129:179–193. doi: 10.1016/j.tifs.2022.09.022.
  • Roy S, Rhim JW. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. Int J Biol Macromol. 2020;148:666–676. doi: 10.1016/j.ijbiomac.2020.01.204.
  • Gharibzahedi SMT, Jafari SM. The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol. 2017;62:119–132. doi: 10.1016/j.tifs.2017.02.017.
  • Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med. 2014;45(2):92–102. doi: 10.1309/lmf28s2gimxnwhmm.
  • Beneduci A, Corrente GA, Marino T, et al. Insight on the chelation of aluminum (III) and iron (III) by curcumin in aqueous solution. J Mol Liq. 2019;296:111805. doi: 10.1016/j.molliq.2019.111805.
  • Khalil MI, Al-Zahem AM, Al-Qunaibit MH. Synthesis, characterization, Mössbauer parameters, and antitumor activity of Fe (III) curcumin complex. Bioinorg Chem Appl. 2013;2013:982423–982425. doi: 10.1155/2013/982423.
  • Bagchi A, Mukherjee P, Bhowmick S, et al. Synthesis, characterization and antibacterial activity of a novel curcumin metal complex. Int J Drug Dev Res. 2015;7(2):011–014.
  • Özbolat G, Yegani AA, Tuli A. Synthesis, characterization and electrochemistry studies of iron (III) complex with curcumin ligand. Clin Exp Pharmacol Physiol. 2018;45(11):1221–1226. doi: 10.1111/1440-1681.12964.
  • Özbolat G, Yegani AA. In vitro effects of iron chelation of curcumin Fe (III) complex. Cukurova Medical Journal. 2019;44(3):947–951. doi: 10.17826/cumj.484672.
  • Ahmed SA, Hasan MN, Bagchi D, et al. Combating essential metal toxicity: key information from optical spectroscopy. ACS Omega. 2020;5(25):15666–15672. doi: 10.1021/acsomega.0c01898.
  • Özbolat G, Alizadeh Yegani A. Synthesis, characterization, biological activity and electrochemistry studies of iron (III) complex with curcumin‐oxime ligand. Clin Exp Pharmacol Physiol. 2020;47(11):1834–1842. doi: 10.1111/1440-1681.13359.
  • Magro M, Campos R, Baratella D, et al. A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties. Chemistry. 2014;20(37):11913–11920. doi: 10.1002/chem.201402820.
  • Neupane M, Lee S, Park I, et al. Synthesis of gelatincapped gold nanoparticles with variable gelatin concentration. J Nanopart Res. 2011;13(2):491–498. doi: 10.1007/s11051-010-9971-9.
  • Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359(1):318–325. doi: 10.1016/j.jcis.2011.03.071.
  • Gangwar RK, Dhumale VA, Kumari D, et al. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater Sci Eng C. 2012;32(8):2659–2663. doi: 10.1016/j.msec.2012.07.022.
  • Alibolandi M, Hoseini F, Mohammadi M, et al. Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for Colon adenocarcinoma. Int J Pharm. 2018;549(1-2):67–75. doi: 10.1016/j.ijpharm.2018.07.052.
  • Danafar H, Shara F A, Kheiri S, et al. Co-delivery of sulforaphane and curcumin with PEGylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iran J Pharm Res. 2018;17(2):480–494.
  • Singh LM, Chakraborty B, Pal R, et al. A comparative study on the antioxidant and immunomodulatory properties of curcumin conjugated gold nanospheres and free curcumin. J Appl Pharm Sci. 2017;7(11):056–063.
  • Hatcher H, Planalp R, Cho J, et al. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–1652. doi: 10.1007/s00018-008-7452-4.
  • Muniyappan N, Pandeeswaran M, Amalraj A. Green synthesis of gold nanoparticles using curcuma pseudomontana isolated curcumin: its characterization, antimicrobial, antioxidant and anti-inflammatory activities. Environ Chem Ecotoxicol. 2021;3:117–124. doi: 10.1016/j.enceco.2021.01.002.
  • Adlia A, Tomagola I, Damayanti S, et al. Antifibrotic activity and in ovo toxicity study of liver-targeted curcumin-gold nanoparticle. Sci Pharm. 2018;86(4):41. doi: 10.3390/scipharm86040041.
  • Elegbede JA, Lateef A, Azeez MA, et al. Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valor. 2020;11(3):781–791. doi: 10.1007/s12649-018-0540-2.
  • Singh DK, Jagannathan R, Khandelwal P, et al. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale. 2013;5(5):1882–1893. doi: 10.1039/c2nr33776b.
  • Mahmoudi A, Kesharwani P, Majeed M, et al. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces. 2022;215:112481. doi: 10.1016/j.colsurfb.2022.112481.
  • Al-Ani LA, Yehye WA, Kadir FA, et al. Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: anti-oxidant potency and selective cancer cytotoxicity. PLoS One. 2019;14(5):e0216725. doi: 10.1371/journal.pone.0216725.
  • Nambiar S, Osei E, Fleck A, et al. Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line. Appl Nanosci. 2018;8(3):347–357. doi: 10.1007/s13204-018-0728-6.
  • Qi J, Liu T, Zhao W, et al. Synthesis, crystal structure and antiproliferative mechanisms of gallium(III) complexes with benzoylpyridine thiosemicarbazones. RSC Adv. 2020;10(32):18553–18559. doi: 10.1039/d0ra02913k.
  • Jahangoshaei P, Hassani L, Mohammadi F, et al. Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities. J Biol Inorg Chem. 2015;20(7):1135–1146. doi: 10.1007/s00775-015-1295-x.
  • Mari M, Carrozza D, Malavasi G, et al. Curcumin-based β-diketo ligands for Ga3+: thermodynamic investigation of potential metal-based drugs. Pharmaceuticals. 2022;15(7):854. doi: 10.3390/ph15070854.
  • Banerjee S, Chakravarty AR. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc Chem Res. 2015;48(7):2075–2083. doi: 10.1021/acs.accounts.5b00127.
  • Mohammadi K, Thompson KH, Patrick BO, et al. Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications. J Inorg Biochem. 2005;99(11):2217–2225. doi: 10.1016/j.jinorgbio.2005.08.001.
  • Mary CPV, Vijayakumar S, Shankar R. Metal chelating ability and antioxidant properties of curcumin-metal complexes–a DFT approach. J Mol Graph Model. 2018;79:1–14. doi: 10.1016/j.jmgm.2017.10.022.
  • Mittal A, Vashistha VK, Das DK. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radic Res. 2022;56(5-6):378–397. doi: 10.1080/10715762.2022.2120396.
  • Mittal A, Kakkar R. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study. Free Radic Res. 2020;54(10):777–786. doi: 10.1080/10715762.2020.1849670.
  • Mittal A, Kakkar R. The antioxidant potential of retrochalcones isolated from liquorice root: a comparative DFT study. Phytochemistry. 2021;192:112964. doi: 10.1016/j.phytochem.2021.112964.
  • Medigue NEH, Bouakouk-Chitti Z, Bechohra LL, et al. Theoretical study of the impact of metal complexation on the reactivity properties of curcumin and its diacetylated derivative as antioxidant agents. J Mol Model. 2021;27(6):192. doi: 10.1007/s00894-021-04768-3.
  • Baira K, Ounissi A, Merouani H, et al. Multitask quantum study of the curcumin-based complex physicochemical and biological properties. IJMS. 2022;23(5):2832. doi: 10.3390/ijms23052832.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.