199
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Omaveloxolone ameliorates isoproterenol-induced pathological cardiac hypertrophy in mice

, , , , &
Pages 57-68 | Received 30 May 2023, Accepted 19 Dec 2023, Published online: 01 Jan 2024

References

  • Bakhshi H, Michelhaugh SA, Bruce SA, et al. Association between proteomic biomarkers and myocardial fibrosis measured by MRI: the multi-ethnic study of atherosclerosis. EBioMedicine. 2023;90:104490. doi: 10.1016/j.ebiom.2023.104490.
  • Jia R, Zhang X, Xu Y, et al. Effect of sacubitril/valsartan on renal function in patients with chronic kidney disease and heart failure with preserved ejection fraction: a real-world 12-week study. Eur J Pharmacol. 2022;928:175053. doi: 10.1016/j.ejphar.2022.175053.
  • Qian K, Tang J, Ling Y-J, et al. Exogenous NADPH exerts a positive inotropic effect and enhances energy metabolism via SIRT3 in pathological cardiac hypertrophy and heart failure. EBioMedicine. 2023;98:104863. doi: 10.1016/j.ebiom.2023.104863.
  • Kresoja K-P, Unterhuber M, Wachter R, et al. Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials. EBioMedicine. 2023;96:104795. doi: 10.1016/j.ebiom.2023.104795.
  • Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15(7):387–407. doi: 10.1038/s41569-018-0007-y.
  • Bernardo BC, Weeks KL, Pretorius L, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128(1):191–227. doi: 10.1016/j.pharmthera.2010.04.005.
  • Martinez-Quintana E, Estupinan-Leon H, et al. Quality of life in congenital heart disease patients according to their anatomical and physiological classification. " Congenit Heart Dis. 2023;18(2):197–206. doi: 10.32604/CHD.2021.013308
  • Yin A, Yuan R, Xiao Q, et al. Exercise-derived peptide protects against pathological cardiac remodeling. EBioMedicine. 2022;82:104164. doi: 10.1016/j.ebiom.2022.104164.
  • Park JS, Seo GH, et al. Factors affecting the genetic diagnostic rate in congenital heart disease. Congenit Heart Dis. 2022;17(6):653–673. doi: 10.32604/chd.2022.021580.
  • Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–262. doi: 10.1016/j.yjmcc.2016.06.001.
  • Wilson C, Zi M, Smith M, et al. Atrioventricular node dysfunction in pressure overload-induced heart failure-Involvement of the immune system and transcriptomic remodelling. Front Pharmacol. 2023;14:1083910. doi: 10.3389/fphar.2023.1083910.
  • Wang Y, Zhao R, Wu C, et al. Activation of the sirtuin silent information regulator 1 pathway inhibits pathological myocardial remodeling. Front Pharmacol. 2023;14:1111320. doi: 10.3389/fphar.2023.1111320.
  • Zhen C, Wu X, Zhang J, et al. Ganoderma lucidum polysaccharides attenuates pressure-overload-induced pathological cardiac hypertrophy. Front Pharmacol. 2023;14:1127123. doi: 10.3389/fphar.2023.1127123.
  • Jiang Z, Qi G, Lu W, et al. Omaveloxolone inhibits IL-1beta-induced chondrocyte apoptosis through the Nrf2/ARE and NF-kappaB signalling pathways in vitro and attenuates osteoarthritis in vivo. Front Pharmacol. 2022;13:952950. doi: 10.3389/fphar.2022.952950.
  • Zhan J-Y, Zhang Y, Zhong X, et al. Liqi huoxue dripping pill protects against myocardial ischemia-reperfusion injury via the PI3K/akt/GSK-3 beta signaling pathway in rats. Tradit Med Res. 2023;8(4):21. doi: 10.53388/TMR20220903001.
  • Hu L, Cao Y, Chen H, et al. The novel Nrf2 activator omaveloxolone regulates microglia phenotype and ameliorates secondary brain injury after intracerebral hemorrhage in mice. Oxid Med Cell Longev. 2022;2022:4564471–4564418. doi: 10.1155/2022/4564471.
  • Jian W, Ma H, Wang D, et al. Omaveloxolone attenuates the sepsis-induced cardiomyopathy via activating the nuclear factor erythroid 2-related factor 2. Int Immunopharmacol. 2022;111:109067. doi: 10.1016/j.intimp.2022.109067.
  • Yang M-J, Han X-Y, Qiao O, et al. Effect of salvianolic acid B-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury. Tradit Med Res. 2023;8(8):45. doi: 10.53388/TMR20230117001.
  • Yang Y, Xu C, Tang S, et al. Interleukin-9 aggravates isoproterenol-induced heart failure by activating signal transducer and activator of transcription 3 signalling. Can J Cardiol. 2020;36(11):1770–1781. doi: 10.1016/j.cjca.2020.01.011.
  • Yu S, Qian H, Tian D, et al. Linggui zhugan decoction activates the SIRT1-AMPK-PGC1alpha signaling pathway to improve mitochondrial and oxidative damage in rats with chronic heart failure caused by myocardial infarction. Front Pharmacol. 2023;14:1074837. doi: 10.3389/fphar.2023.1074837.
  • Zhou J-C, Jin C-C, Wei X-L, et al. Mesaconine alleviates doxorubicin-triggered cardiotoxicity and heart failure by activating PINK1-dependent cardiac mitophagy. Front Pharmacol. 2023;14:1118017. doi: 10.3389/fphar.2023.1118017.
  • Altieri DI, Etzion Y, Anderson HD. Cannabinoid receptor agonist attenuates angiotensin II-induced enlargement and mitochondrial dysfunction in rat atrial cardiomyocytes. Front Pharmacol. 2023;14:1142583.,. doi: 10.3389/fphar.2023.1142583.
  • Bjune MS, Lawrence-Archer L, Laupsa-Borge J, et al. Metabolic role of the hepatic valine/3-hydroxyisobutyrate (3-HIB) pathway in fatty liver disease. EBioMedicine. 2023;91:104569. doi: 10.1016/j.ebiom.2023.104569.
  • Wang J, Cai E, An X, et al. Ginaton reduces M1-polarized macrophages in hypertensive cardiac remodeling via NF-κB signaling. Front Pharmacol. 2023;14:1104871. doi: 10.3389/fphar.2023.1104871.
  • Hong X, Jian Y, Ding S, et al. Kir4.1 channel activation in NG2 glia contributes to remyelination in ischemic stroke. EBioMedicine. 2023;87:104406. doi: 10.1016/j.ebiom.2022.104406.
  • Lynch DR, Chin MP, Delatycki MB, et al. Safety and efficacy of omaveloxolone in friedreich ataxia (MOXIe study). Ann Neurol. 2021;89(2):212–225. doi: 10.1002/ana.25934.
  • Shanmugam G, Challa AK, Litovsky SH, et al. Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice. Redox Biol. 2019;27:101212. doi: 10.1016/j.redox.2019.101212.
  • Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019;11(9):2090. doi: 10.3390/nu11092090.
  • Wan R, Srikaram P, Guntupalli V, et al. Cellular senescence in asthma: from pathogenesis to therapeutic challenges. EBioMedicine. 2023;94:104717. doi: 10.1016/j.ebiom.2023.104717.
  • Crnko S, Printezi MI, Zwetsloot P-PM, et al. The circadian clock remains intact, but with dampened hormonal output in heart failure. EBioMedicine. 2023;91:104556. doi: 10.1016/j.ebiom.2023.104556.
  • Zhang Z, Tan Y, Huang C, et al. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine. 2023;89:104483. doi: 10.1016/j.ebiom.2023.104483.
  • Zhuang L, Zong X, Yang Q, et al. Interleukin-34-NF-kappaB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization. EBioMedicine. 2023;95:104744. doi: 10.1016/j.ebiom.2023.104744.
  • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. doi: 10.1016/j.redox.2015.01.002.
  • Wei JJ, Du JL. Mechanisms of sodium-glucose cotransporter 2 inhibitors in heart failure. Cardiovasc Innov Appl. 2023;8(1). doi: 10.15212/CVIA.2023.0028.
  • Yang Y, Xia Z, Xu C, et al. Ciprofol attenuates the isoproterenol-induced oxidative damage, inflammatory response and cardiomyocyte apoptosis. Front Pharmacol. 2022;13:1037151. doi: 10.3389/fphar.2022.1037151.
  • Mu L, Ye Z, Hu J, et al. PPM1K-regulated impaired catabolism of branched-chain amino acids orchestrates polycystic ovary syndrome. EBioMedicine. 2023;89:104492. doi: 10.1016/j.ebiom.2023.104492.
  • Vaikunthanathan T, Landmann E, Correa DM, et al. Dysregulated anti-oxidant signalling and compromised mitochondrial integrity negatively influence regulatory T cell function and viability in liver disease. EBioMedicine. 2023;95:104778. doi: 10.1016/j.ebiom.2023.104778.
  • Daiber A, Steven S, Euler G, et al. Vascular and cardiac oxidative stress and inflammation as targets for cardioprotection. Curr Pharm Des. 2021;27(18):2112–2130. doi: 10.2174/1381612827666210125155821.
  • Fu Y, Liu T, He S, et al. Ursolic acid reduces oxidative stress injury to ameliorate experimental autoimmune myocarditis by activating Nrf2/HO-1 signaling pathway. Front Pharmacol. 2023;14:1189372. doi: 10.3389/fphar.2023.1189372.
  • Zhang X, Chen Q, Zhao J, et al. A four-compound remedy AGILe protected H9c2 cardiomyocytes against oxygen glucose deprivation via targeting the TNF-α/NF-κB pathway: implications for the therapy of myocardial infarction. Front Pharmacol. 2023;14:1050970. doi: 10.3389/fphar.2023.1050970.
  • Chang C, Cai RP. Uncovering the genetic link between acute myocardial infarction and ulcerative colitis Co-Morbidity through a systems biology approach. Cardiovasc Innov Appl. 2023;8(1). doi: 10.15212/CVIA.2023.0034.
  • Zhao L, Cheng G, Jin R, et al. Deletion of interleukin-6 attenuates pressure Overload-Induced left ventricular hypertrophy and dysfunction. Circ Res. 2016;118(12):1918–1929. doi: 10.1161/CIRCRESAHA.116.308688.
  • Bai Y, Wu H, Zheng L, et al. Mechanisms of yajieshaba in the treatment of liver fibrosis through the Keap1-Nrf2 signaling pathway. Front Pharmacol. 2023;14:1124015. doi: 10.3389/fphar.2023.1124015.
  • Chen T, Hu Y, Lu L, et al. Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats via NRF2 signaling pathway. Front Pharmacol. 2023;14:1134464. doi: 10.3389/fphar.2023.1134464.
  • Wang Y, Tang B, Li H, et al. A small-molecule inhibitor of Keap1-Nrf2 interaction attenuates sepsis by selectively augmenting the antibacterial defence of macrophages at infection sites. EBioMedicine. 2023;90:104480. doi: 10.1016/j.ebiom.2023.104480.
  • Lou L, Wang M, He J, et al. Urolithin A (UA) attenuates ferroptosis in LPS-induced acute lung injury in mice by upregulating Keap1-Nrf2/HO-1 signaling pathway. Front Pharmacol. 2023;14:1067402. doi: 10.3389/fphar.2023.1067402.
  • Zhao C, Xiao C, Feng S, et al. Artemisitene alters LPS-Induced oxidative stress, inflammation and ferroptosis in liver through Nrf2/HO-1 and NF-kB pathway. Front Pharmacol. 2023;14:1177542. doi: 10.3389/fphar.2023.1177542.
  • Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865(5):721–733. doi: 10.1016/j.bbamcr.2018.02.010.
  • Chen QM, Maltagliati AJ. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics. 2018;50(2):77–97. doi: 10.1152/physiolgenomics.00041.2017.
  • Liu J, Li X, Ding L, et al. GRK2 participation in cardiac hypertrophy induced by isoproterenol through the regulation of Nrf2 signaling and the promotion of NLRP3 inflammasome and oxidative stress. Int Immunopharmacol. 2023;117:109957. doi: 10.1016/j.intimp.2023.109957.
  • Park WY, Kim GB, Lee SY, et al. Long-Term outcome and risk factor analysis of surgical pulmonary valve replacement in congenital heart disease. Congenit Heart Dis. 2022;17(3):335–350. doi: 10.32604/chd.2022.018666.
  • Aquila I, Cianflone E, Scalise M, et al. c-kit haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration. Cell Death Dis. 2019;10(6):436. doi: 10.1038/s41419-019-1655-5.
  • Salerno N, Scalise M, Marino F, et al. A mouse model of dilated cardiomyopathy produced by isoproterenol acute exposure followed by 5-Fluorouracil administration. J Cardiovasc Dev Dis. 2023;10(6):225. doi: 10.3390/jcdd10060225.
  • Ehler E, Moore-Morris T, et al. Isolation and culture of neonatal mouse cardiomyocytes. J Vis. 2013;(79):50154.
  • Wang X, Li W, Zhang Y, et al. Calycosin as a novel PI3K activator reduces inflammation and fibrosis in heart failure through AKT-IKK/STAT3 axis. Front Pharmacol. 2022;13:828061. doi: 10.3389/fphar.2022.828061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.