2,782
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors

, , , , , & show all
Article: 2161670 | Received 22 Jul 2022, Accepted 16 Dec 2022, Published online: 01 Jan 2023

References

  • Adu-Berchie K, Mooney DJ. (2020). Biomaterials as local niches for immunomodulation. Acc Chem Res 53:1–14.
  • Ahmed EM. (2015). Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 6:105–21.
  • Alegre ML, Frauwirth KA, Thompson CB. (2001). T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 1:220–8.
  • Appel EA, Tibbitt MW, Webber MJ, et al. (2015). Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun 6:6295.
  • Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. (2016). Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–73.
  • Binnewies M, Roberts EW, Kersten K, et al. (2018). Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–50.
  • Castano AP, Mroz P, Hamblin MR. (2006). Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–45.
  • Chao Y, Chen Q, Liu Z. (2020). Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater 30:1902785.
  • Chao Y, Liang C, Tao H, et al. (2020). Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci Adv 6:eaaz4204.
  • Chao Y, Xu L, Liang C, et al. (2018). Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng 2:611–21.
  • Cheever MA, Higano CS. (2011). PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520–6.
  • Chen EY, Mayo SC, Sutton T, et al. (2021). Effect of time to surgery of colorectal liver metastases on survival. J Gastrointest Cancer 52:169–76.
  • Chen G, Tang W, Wang X, et al. (2019). Applications of hydrogels with special physical properties in biomedicine. Polymers (Basel) 11:1420.
  • Chen M, Tan Y, Dong Z, et al. (2020). Injectable anti-inflammatory nanofiber hydrogel to achieve systemic immunotherapy post local administration. Nano Lett 20:6763–73.
  • Chen Q, Xu L, Liang C, et al. (2016). Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193.
  • Cherkassky L, Hou Z, Amador-Molina A, Adusumilli PS. (2022). Regional CAR T cell therapy: An ignition key for systemic immunity in solid tumors. Cancer Cell 40:569–74.
  • Choudhury D, Tun HW, Wang T, Naing MW. (2018). Organ-derived decellularized extracellular matrix: A game changer for bioink manufacturing? Trends Biotechnol 36:787–805.
  • Chung CK, Fransen MF, van der Maaden K, et al. (2020). Thermosensitive hydrogels as sustained drug delivery system for CTLA-4 checkpoint blocking antibodies. J Control Release 323:1–11.
  • Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. (2020). Hydrogels as potential nano-, micro-and macro-scale systems for controlled drug delivery. Materials 13:188.
  • Coley WB. (1991). The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res (262):3–11.
  • Crous AM, Abrahamse H. (2013). Lung cancer stem cells and low-intensity laser irradiation: a potential future therapy? Stem Cell Res Ther 4:129.
  • Crusz SM, Balkwill FR. (2015). Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12:584–96.
  • Cui R, Wu Q, Wang J, et al. (2021). Hydrogel-by-design: Smart delivery system for cancer immunotherapy. Front Bioeng Biotechnol 9:9.
  • Czarnecka E, Nowaczyk J. (2020). Semi-natural superabsorbents based on starch-g-poly(acrylic acid): Modification, synthesis and application. Polymers (Basel) 12:1794.
  • Deng S, Iscaro A, Zambito G, et al. (2021). Development of a new hyaluronic acid based redox-responsive nanohydrogel for the encapsulation of oncolytic viruses for cancer immunotherapy. Nanomaterials 11:144.
  • Dong X, Liang J, Yang A, et al. (2019). Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials 209:111–25.
  • Du YN, Wei Q, Zhao LJ, et al. (2022). Hydrogel-based co-delivery of CIK cells and oncolytic adenovirus armed with IL12 and IL15 for cancer immunotherapy. Biomed Pharmacother 151:113110.
  • Emens LA. (2010). Chemoimmunotherapy. Cancer J 16:295–303.
  • Ewens A, Luo L, Berleth E, et al. (2006). Doxorubicin plus interleukin-2 chemoimmunotherapy against breast cancer in mice. Cancer Res 66:5419–26.
  • Fan W, Huang P, Chen X. (2016). Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev 45:6488–519.
  • Francis DM, Thomas SN. (2017). Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev 114:33–42.
  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, KEYNOTE-189 Investigators, et al. (2018). Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378:2078–92.
  • Gonzalez H, Hagerling C, Werb Z. (2018). Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–84.
  • Greenwald RJ, Freeman GJ, Sharpe AH. (2005). The B7 family revisited. Annu Rev Immunol 23:515–48.
  • Grosser R, Cherkassky L, Chintala N, Adusumilli PS. (2019). Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36:471–82.
  • Grosskopf AK, Labanieh L, Klysz DD, et al. (2022). Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Sci Adv 8:eabn8264.
  • Grosskopf AK, Roth GA, Smith AAA, et al. (2020). Injectable supramolecular polymer-nanoparticle hydrogels enhance human mesenchymal stem cell delivery. Bioeng Transl Med 5:e10147.
  • Grosskopf AK, Saouaf OA, Lopez Hernandez H, Appel EA. (2021). Gelation and yielding behavior of polymer–nanoparticle hydrogels. J Polym Sci (2020) 59:2854–66.
  • Hauptstein J, Böck T, Bartolf-Kopp M, et al. (2020). Hyaluronic acid-based bioink composition enabling 3D bioprinting and improving quality of deposited cartilaginous extracellular matrix. Adv Healthc Mater 9:e2000737.
  • Hegde PS, Chen DS. (2020). Top 10 challenges in cancer immunotherapy. Immunity 52:17–35.
  • Heo MB, Kim SY, Yun WS, Lim YT. (2015). Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int J Nanomedicine 10:5981–92.
  • Hodi FS, O’Day SJ, McDermott DF, et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–23.
  • Hoo SP, Sarvi F, Li WH, et al. (2013). Thermoresponsive cellulosic hydrogels with cell-releasing behavior. ACS Appl Mater Interfaces 5:5592–600.
  • Hori Y, Winans AM, Huang CC, et al. (2008). Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29:3671–82.
  • Hu Z, Ott PA, Wu CJ. (2018). Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol 18:168–82.
  • Hussain T, Ansari M, Ranjha NM, et al. (2013). Chemically cross-linked poly(acrylic-co-vinylsulfonic) acid hydrogel for the delivery of isosorbide mononitrate. ScientificWorldJ 2013:340737.
  • Ishihara M, Nakanishi K, Ono K, et al. (2002). Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–40.
  • Ishikawa E, Yamamoto T, Matsumura A. (2017). Prospect of immunotherapy for glioblastoma: Tumor vaccine, immune checkpoint inhibitors and combination therapy. Neurol Med Chir (Tokyo) 57:321–30.
  • Janjigian YY, Shitara K, Moehler M, et al. (2021). First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial[J]. Lancet 398:27–40.
  • Jenner AL, Frascoli F, Yun C-O, Kim PS. (2020). Optimising hydrogel release profiles for viro-immunotherapy using oncolytic adenovirus expressing IL-12 and GM-CSF with immature dendritic cells. Appl Sci 10:2872.
  • Jiang Y, Wang Y, Li Q, et al. (2020). Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem 27:2631–57.
  • Kaufman HL, Kohlhapp FJ, Zloza A. (2015). Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14:642–62.
  • Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. (2016). The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–90.
  • Krysko DV, Garg AD, Kaczmarek A, et al. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–75.
  • Kuai R, Ochyl LJ, Bahjat KS, et al. (2017). Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16:489–96.
  • Kudo M. (2019). Scientific rationale for combination immunotherapy of hepatocellular carcinoma with anti-PD-1/PD-L1 and anti-CTLA-4 antibodies. Liver Cancer 8:413–26.
  • Kumar S, Bajaj A. (2020). Advances in self-assembled injectable hydrogels for cancer therapy. Biomater Sci 8:2055–73.
  • Lake RA, Robinson BW. (2005). Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer 5:397–405.
  • Le TMD, Jung B-K, Li Y, et al. (2019). Physically crosslinked injectable hydrogels for long-term delivery of oncolytic adenoviruses for cancer treatment. Biomater Sci 7:4195–207.
  • Leach DG, Young S, Hartgerink JD. (2019). Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 88:15–31.
  • Li Q, Shi Z, Zhang F, et al. (2022). Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 12:107–34.
  • Li W, Zhu X, Zhou X, Wang X, et al. (2021). An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Control Release 334:376–88.
  • Li Y, Rodrigues J, Tomás H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41:2193–221.
  • Li Y, Yang HY, Lee DS. (2021). Advances in biodegradable and injectable hydrogels for biomedical applications. J Control Release 330:151–60.
  • Lim WA, June CH. (2017). The principles of engineering immune cells to treat cancer. Cell 168:724–40.
  • Liu E, Marin D, Banerjee P, et al. (2020). Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 382:545–53.
  • Liu H, Chen T, Dong C, Pan X. (2020). Biomedical applications of hemicellulose-based hydrogels. Curr Med Chem 27:4647–59.
  • Liu R, Zhang S, Chen X. (2020). Injectable hydrogels for tendon and ligament tissue engineering. J Tissue Eng Regen Med 14:1333–48.
  • Lu L, Yuan S, Wang J, et al. (2018). The formation mechanism of hydrogels. Curr Stem Cell Res Ther 13:490–6.
  • Lussier DM, Johnson JL, Hingorani P, Blattman JN. (2015). Combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J Immunother Cancer 3:21.
  • Marelli G, Howells A, Lemoine NR, Wang Y. (2018). Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front Immunol 9:866.
  • Martinez M, Moon EK. (2019). CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 10:128.
  • Meis CM, Grosskopf AK, Correa S, Appel EA. (2021a). Injectable supramolecular polymer-nanoparticle hydrogels for cell and drug delivery applications. J Vis Exp 28(21):3–12.
  • Meis CM, Salzman EE, Maikawa CL, et al. (2021b). Self-assembled, dilution-responsive hydrogels for enhanced thermal stability of insulin biopharmaceuticals. ACS Biomater Sci Eng 7:4221–9.
  • Mohanty R, Chowdhury CR, Arega S, et al. (2019). CAR T cell therapy: A new era for cancer treatment (Review). Oncol Rep 42:2183–95.
  • Muraoka D, Seo N, Hayashi T, et al. (2019). Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest 129:1278–94.
  • Norouzi M, Nazari B, Miller DW. (2016). Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21:1835–49.
  • Obajdin J, Davies DM, Maher J. (2020). Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 202:11–27.
  • Overwijk WW. (2017). Cancer vaccines in the era of checkpoint blockade: the magic is in the adjuvant. Curr Opin Immunol 47:103–9.
  • Pandya PH, Murray ME, Pollok KE, Renbarger JL. (2016). The immune system in cancer pathogenesis: Potential therapeutic approaches. J Immunol Res 2016:4273943.
  • Pardoll DM. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–64.
  • Patel S, Burga RA, Powell AB, et al. (2019). Beyond CAR T cells: Other cell-based immunotherapeutic strategies against cancer. Front Oncol 9:196.
  • Prestwich RJ, Errington F, Diaz RM, et al. (2009). The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther 20:1119–32.
  • Qian H, Qian K, Cai J, et al. (2019). Therapy for gastric cancer with peritoneal metastasis using injectable albumin hydrogel hybridized with paclitaxel-loaded red blood cell membrane nanoparticles. ACS Biomater Sci Eng 5:1100–12.
  • Qiu H, Guo H, Li D, et al. (2020). Intravesical hydrogels as drug reservoirs. Trends Biotechnol 38:579–83.
  • Rajendrakumar SK, Uthaman S, Cho CS, Park IK. (2018). Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment. Biomacromolecules 19:1869–87.
  • Raskov H, Orhan A, Gaggar S, Gögenur I. (2021). Cancer-associated fibroblasts and tumor-associated macrophages in cancer and cancer immunotherapy. Front Oncol 11:668731.
  • Rosenberg JE, Hoffman-Censits J, Powles T, et al. (2016). Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387:1909–20.
  • Rosenberg SA, Restifo NP. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–8.
  • Rosenberg SA. (2001). Progress in human tumour immunology and immunotherapy. Nature 411:380–4.
  • Russell SJ, Peng KW, Bell JC. (2012). Oncolytic virotherapy. Nat Biotechnol 30:658–70.
  • Salah M, Tayebi L, Moharamzadeh K, Naini FB. (2020). Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 42:18.
  • Sanmamed MF, Chen L. (2018). A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175:313–26.
  • Sehgal K, Dhodapkar KM, Dhodapkar MV. (2014). Targeting human dendritic cells in situ to improve vaccines. Immunol Lett 162:59–67.
  • Sharma P, Allison JP. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–14.
  • Shoemaker RH. (2006). The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–23.
  • Siolas D, Hannon GJ. (2013). Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73:5315–9.
  • Song J, Choi H, Koh SK, et al. (2021). High-throughput 3D in vitro tumor vasculature model for real-time monitoring of immune cell infiltration and cytotoxicity. Front Immunol 12:733317.
  • Spiller KL, Liu Y, Holloway JL, et al. (2012). A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: controlled release for cartilage tissue engineering. J Control Release 157:39–45.
  • Stapleton LM, Steele AN, Wang H, et al. (2019). Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat Biomed Eng 3:611–20.
  • Sugahara KN, Teesalu T, Karmali PP, et al. (2009). Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–20.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–49.
  • Tempero MA, Malafa MP, Al-Hawary M, et al. (2021). Pancreatic adenocarcinoma, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 19:439–57.
  • Ternet C, Kiel C. (2021). Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 19:31.
  • Topalian SL, Weiner GJ, Pardoll DM. (2011). Cancer immunotherapy comes of age. J Clin Oncol 29:4828–36.
  • Vigata M, Meinert C, Hutmacher DW, Bock N. (2020). Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics 12:1188.
  • Waldhauer I, Steinle A. (2008). NK cells and cancer immunosurveillance. Oncogene 27:5932–43.
  • Waldman AD, Fritz JM, Lenardo MJ. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–68.
  • Wang D, Cabalag CS, Clemons NJ, DuBois RN. (2021). Cyclooxygenases and prostaglandins in tumor immunology and microenvironment of gastrointestinal cancer. Gastroenterology 161:1813–29.
  • Wang DK, Zuo Q, He QY, Li B. (2021). Targeted immunotherapies in gastrointestinal cancer: From molecular mechanisms to implications. Front Immunol 12:705999.
  • Wang F, Su H, Xu D, et al. (2020). Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat Biomed Eng 4:1090–101.
  • Wang J, Yuan R, Song W, et al. (2017). PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy: The historical perspective. J Hematol Oncol 10:34.
  • Worbs T, Hammerschmidt SI, Förster R. (2017). Dendritic cell migration in health and disease. Nat Rev Immunol 17:30–48.
  • Wu Y, Li Q, Shim G, Oh YK. (2021). Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J Control Release 330:540–53.
  • Xia Y, Rao L, Yao H, et al. (2020). Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater 32:e2002054.
  • Xiao Y, Gu Y, Qin L, et al. (2021). Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 200:111581.
  • Yang F, Shi K, Hao Y, et al. (2021a). Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioact Mater 6:3036–48.
  • Yang Y, Yang Y, Chen M, et al. (2021b). Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages. Biomater Sci 9:6597–608.
  • Yu AC, Chen H, Chan D, et al. (2016). Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc Natl Acad Sci U S A 113:14255–60.
  • Zhang H, Zhang J, Liu Y, et al. (2021). Molecular targeted agent and immune checkpoint inhibitor co-loaded thermosensitive hydrogel for synergistic therapy of rectal cancer. Front Pharmacol 12:671611.
  • Zheng Y, Wang W, Zhao J, et al. (2019). Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr Polym 222:115039.
  • Zhu H, Lai Z, Fang Y, et al. (2017). Ternary chalcogenide nanosheets with ultrahigh photothermal conversion efficiency for photoacoustic theranostics. Small 13:1604139.
  • Zhu T, Mao J, Cheng Y, et al. (2019). Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces 6:1900761.
  • Zou W, Chen L. (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–77.