984
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sustained release gel (polymer-free) of itraconazole-loaded microemulsion for oral candidiasis treatment: time-kill kinetics and cellular uptake

& ORCID Icon
Article: 2234099 | Received 28 Feb 2023, Accepted 03 Jul 2023, Published online: 14 Jul 2023

References

  • Abd E, Benson HAE, Roberts MS, Grice JE. (2018). Minoxidil skin delivery from nanoemulsion formulations containing eucalyptol or oleic acid: enhanced diffusivity and follicular targeting. Pharmaceutics 10:1–9. doi: 10.3390/pharmaceutics10010019.
  • Aggarwal N, Goindi S, Khurana R. (2013). Formulation, characterization and evaluation of an optimized microemulsion formulation of griseofulvin for topical application. Colloids Surf B Biointerfaces 105:158–166. doi: 10.1016/j.colsurfb.2013.01.004.
  • Agrawal V, Patel R, Patel M, et al. (2021). Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: ex vivo and nail clipping studies. Colloids Surf B Biointerfaces 201:111652. doi: 10.1016/j.colsurfb.2021.111652.
  • Alam MM, Aramaki K. (2014). Liquid crystal-based emulsions: progress and prospects. J Oleo Sci 63:97–108. doi: 10.5650/jos.ess13101.
  • Alves Barroso L, Grossi Bovi Karatay G, Dupas Hubinger M. (2022). Effect of potato starch hydrogel: glycerol monostearate oleogel ratio on the physico-rheological properties of bigels. Gels 8:694–694. doi: 10.3390/gels8110694.
  • Appiah T, Boakye YD, Agyare C. (2017). Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evid Based Complement Alternat Med 2017:4534350. doi: 10.1155/2017/4534350.
  • Barot BS, Parejiya PB, Patel HK, et al. (2012). Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech 13:184–192. doi: 10.1208/s12249-011-9742-7.
  • Burgess DS, Hastings RW, Summers KK, et al. (2000). Pharmacodynamics of fluconazole, itraconazole, and amphotericin B against Candida albicans. Diagn Microbiol Infect Dis 36:13–18. doi: 10.1016/s0732-8893(99)00097-8.
  • Cao R, Wan Q, Tan L, et al. (2021). Evaluation of the vital viability and their application in fungal spores’ disinfection with flow cytometry. Chemosphere 269:128700. doi: 10.1016/j.chemosphere.2020.128700.
  • Essawy MM, El-Sheikh SM, Raslan HS, et al. (2021). Function of gold nanoparticles in oral cancer beyond drug delivery: implications in cell apoptosis. Oral Dis 27:251–265. doi: 10.1111/odi.13551.
  • Falk NA. (2019). Surfactants as antimicrobials: a brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. J Surfactants Deterg 22:1119–1127. doi: 10.1002/jsde.12293.
  • Hoppel M, Juric S, Ettl H, Valenta C. (2015). Effect of monoacyl phosphatidylcholine content on the formation of microemulsions and the dermal delivery of flufenamic acid. Int J Pharm 479:70–76. doi: 10.1016/j.ijpharm.2014.12.048.
  • Hua S. (2019). Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol 10:1328. doi: 10.3389/fphar.2019.01328.
  • Jaiswal P, Aggarwal G, Harikumar SL, Singh K. (2014). Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. Int J Pharm Investig 4:195–206. doi: 10.4103/2230-973X.143123.
  • Kalam MA, Alshamsan A, Aljuffali IA, et al. (2016). Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv 23:896–907. doi: 10.3109/10717544.2014.920432.
  • Khumpirapang N, Klayraung S, Tima S, Okonogi S. (2021). Development of microemulsion containing Alpinia galanga oil and its major compounds: enhancement of antimicrobial activities. Pharmaceutics 13:265–265. doi: 10.3390/pharmaceutics13020265.
  • Laracuente ML, Yu MH, McHugh KJ. (2020). Zero-order drug delivery: state of the art and future prospects. J Control Release 327:834–856. doi: 10.1016/j.jconrel.2020.09.020.
  • Latifah-Munirah B, Himratul-Aznita WH, Mohd Zain N. (2015). Eugenol, an essential oil of clove, causes disruption to the cell wall of Candida albicans (ATCC 14053). Front Life Sci 8:231–240. doi: 10.1080/21553769.2015.1045628.
  • Mahrhauser D, Hoppel M, Schöll J, et al. (2014). Simultaneous analysis of skin penetration of surfactant and active drug from fluorosurfactant-based microemulsions. Eur J Pharm Biopharm 88:34–39. doi: 10.1016/j.ejpb.2014.04.019.
  • Mahrhauser DS, Kählig H, Partyka-Jankowska E, et al. (2015). Investigation of microemulsion microstructure and its impact on skin delivery of flufenamic acid. Int J Pharm 490:292–297. doi: 10.1016/j.ijpharm.2015.05.056.
  • Naeem M, Ur Rahman N, Tavares GD, et al. (2015). Physicochemical, in vitro and in vivo evaluation of flurbiprofen microemulsion. An Acad Bras Cienc 87:1823–1831. doi: 10.1590/0001-3765201520130436.
  • Nastiti CMRR, Ponto T, Abd E, et al. (2017). Topical nano and microemulsions for skin delivery. Pharmaceutics 9:37–37. doi: 10.3390/pharmaceutics9040037.
  • Noël de Tilly A, Tharmalingam S. (2022). Review of treatments for oropharyngeal fungal infections in HIV/AIDS patients. Microbiol Res 13:219–234. doi: 10.3390/microbiolres13020019.
  • Pandey M, Choudhury H, Ying JNS, et al. (2022). Mucoadhesive nanocarriers as a promising strategy to enhance intracellular delivery against oral cavity carcinoma. Pharmaceutics 14:795. doi: 10.3390/pharmaceutics14040795.
  • Patel MR, Patel RB, Parikh JR, Patel BG. (2016). Novel microemulsion-based gel formulation of tazarotene for therapy of acne. Pharm Dev Technol 21:921–932. doi: 10.3109/10837450.2015.1081610.
  • Patel P, Pol A, Kalaria D, et al. (2021). Microemulsion-based gel for the transdermal delivery of rasagiline mesylate: in vitro and in vivo assessment for Parkinson’s therapy. Eur J Pharm Biopharm 165:66–74. doi: 10.1016/j.ejpb.2021.04.026.
  • Rajabalaya R, Musa MN, Kifli N, David SR. (2017). Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther 11:393–406. doi: 10.2147/DDDT.S103505.
  • Said M, Elsayed I, Aboelwafa AA, Elshafeey AH. (2017). Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability. Drug Deliv 24:1159–1169. doi: 10.1080/10717544.2017.1365392.
  • Scomoroscenco C, Teodorescu M, Raducan A, et al. (2021). Novel gel microemulsion as topical drug delivery system for curcumin in Dermatocosmetics. Pharmaceutics 13:505–505. doi: 10.3390/pharmaceutics13040505.
  • Sekikawa S, Onda T, Miura N, et al. (2018). Underexpression of alpha-1-microglobulin/bikunin precursor predicts a poor prognosis in oral squamous cell carcinoma. Int J Oncol 53:2605–2614. doi: 10.3892/ijo.2018.4581.
  • Sharma DK, Sharma P. (2022). Augmented glutathione absorption from oral mucosa and its effect on skin pigmentation: a clinical review. Clin Cosmet Investig Dermatol 15:1853–62. doi: 10.2147/CCID.S378470.
  • Shukla T, Upmanyu N, Agrawal M, et al. (2018). Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother 108:1477–1494. doi: 10.1016/j.biopha.2018.10.021.
  • Solans C, Solé I. (2012). Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254. doi: 10.1016/j.cocis.2012.07.003.
  • Souto EB, Cano A, Martins-Gomes C, et al. (2022). Microemulsions and nanoemulsions in skin drug delivery. Bioengineering (Basel) 9:158. doi: 10.3390/bioengineering9040158.
  • Stojkov G, Niyazov Z, Picchioni F, Bose RK. (2021). Relationship between structure and rheology of hydrogels for various applications. Gels 7:255–255. doi: 10.3390/gels7040255.
  • Su R, Fan W, Yu Q, et al. (2017). Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget 8:38214–38226. doi: 10.18632/oncotarget.17130.
  • Subongkot T, Ngawhirunpat T. (2017). Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. Int J Nanomedicine 12:5585–5599. doi: 10.2147/IJN.S142503.
  • Todosijević MN, Savić MM, Batinić BB, et al. (2015). Biocompatible microemulsions of a model NSAID for skin delivery: a decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. Int J Pharm 496:931–941. doi: 10.1016/j.ijpharm.2015.10.048.
  • Triboandas H, Pitt K, Bezerra M, et al. (2022). Itraconazole amorphous solid dispersion tablets: formulation and compaction process optimization using quality by design principles and tools. Pharmaceutics 14:2398–2398. doi: 10.3390/pharmaceutics14112398.
  • Tubtimsri S, Weerapol Y, Soontaranon S, et al. (2022). Monolaurin-loaded gel-like microemulsion for oropharyngeal candidiasis treatment: structural characterisation and in vitro antifungal property. AAPS PharmSciTech 23:87. doi: 10.1208/s12249-022-02235-7.
  • Venugopal DC, Senthilnathan RD, Maanvizhi S, et al. (2023). Preparation and characterization of silymarin gel: a novel topical mucoadhesive formulation for potential applicability in oral pathologies. Gels 9:139. doi: 10.3390/gels9020139.
  • Weerapol Y, Limmatvapirat S, Nunthanid J, Sriamornsak P. (2014). Self-nanoemulsifying drug delivery system of nifedipine: impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants. AAPS PharmSciTech 15:456–464. doi: 10.1208/s12249-014-0078-y.
  • Weerapol Y, Limmatvapirat S, Takeuchi H, Sriamornsak P. (2015). Fabrication of spontaneous emulsifying powders for improved dissolution of poorly water-soluble drugs. Powder Technol 271:100–108. doi: 10.1016/j.powtec.2014.10.037.
  • Weerapol Y, Sriamornsak P. (2020). Differences in viscoelasticity of ophthalmic polymer solution after sterilization. Walailak J Sci & Tech 17:686–697. doi: 10.48048/wjst.2020.6341.
  • Zhang Y, Huo M, Zhou J, et al. (2010). DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 12:263–271. doi: 10.1208/s12248-010-9185-1.