130
Views
1
CrossRef citations to date
0
Altmetric
Brief Reports

Naturally-occurring microbial consortia for the potential bioremediation of hydrocarbon-polluted sites in Trinidad

& ORCID Icon
Pages 443-452 | Published online: 25 Feb 2022

References

  • Atlas, R. M., R. Bartha, and D. Atlas. 1998. Microbial ecology: Fundamentals and applications Menlo Park, CA: Benjamin Cummings Publ. Cmp., Inc.
  • Banat, I. M., S. K. Satpute, S. S. Cameotra, R. Patil, and N. V. Nyayanit. 2014. Cost effective technologies and renewable substrates for biosurfactants' production. Frontiers in Microbiology 5:697. doi: 10.3389/fmicb.2014.00697.
  • Besson, G. A. 2014. Black gold part 1: The real El Dorado. In Trinidad And Tobago: The black gold book, 18–36. Trinidad and Tobago: Paria Publishing.
  • Bundy, J. G., G. I. Paton, and C. D. Campbell. 2004. Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil. Soil Biology and Biochemistry 36 (7):1149–59. doi: 10.1016/j.soilbio.2004.02.025.
  • Calvo, C., M. Manzanera, G. A. Silva-Castro, I. Uad, and J. González-López. 2009. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment 407 (12):3634–40. doi: 10.1016/j.scitotenv.2008.07.008.
  • Cameotra, S. S., and R. S. Makkar. 2010. Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure and Applied Chemistry 82 (1):97–116. doi: 10.1351/PAC-CON-09-02-10.
  • Cecotti, M., B. M. Coppotelli, V. C. Mora, M. Viera, and I. S. Morelli. 2018. Efficiency of surfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbon-contaminated soil: Link with bioavailability and the dynamics of the bacterial community. Science of the Total Environment 634:224–34. doi: 10.1016/j.scitotenv.2018.03.303.
  • Das, N., and P. Chandran. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International 2011:941810. doi: 10.4061/2011/941810.
  • Dean-Ross, D.,. J. Moody, and C. E. Cerniglia. 2002. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiology Ecology 41 (1):1–7. doi: 10.1111/j.1574-6941.2002.tb00960.x.
  • Desai, J. D., and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews: MMBR 61 (1):47–64. doi: 10.1128/mmbr.61.1.47-64.1997.
  • Dombrowski, N., J. A. Donaho, T. Gutierrez, K. W. Seitz, A. P. Teske, and B. J. Baker. 2016. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nature Microbiology 1 (7):16057. doi: 10.1038/nmicrobiol.2016.57.
  • Eldin, A. M., Z. Kamel, and N. Hossam. 2019. Isolation and genetic identification of yeast producing biosurfactants, evaluated by different screening methods. Microchemical Journal 146:309–14. doi: 10.1016/j.microc.2019.01.020.
  • Hosein, A. 2008. Isolation and characterisation of polycyclic aromatic hydrocarbon (PAH) degrading bacteria from the soils adjacent of the La Brea Pitch Lake seepage. MPhil Thesis, The University of the West Indies, St. Augustine. Trinidad and Tobago - West Indies.
  • Jagmann, N., and B. Philipp. 2014. Design of synthetic microbial communities for biotechnological production processes. Journal of Biotechnology 184:209–18. doi: 10.1016/j.jbiotec.2014.05.019.
  • Johns, N. I., T. Blazejewski, A. L. C. Gomes, and H. H. Wang. 2016. Principles for designing synthetic microbial communities. Current Opinion in Microbiology. 31:146–153. doi: 10.1016/j.mib.2016.03.010.
  • Jones, J. G., M. Knight, and J. A. Byrom. 1970. Effect of gross pollution by kerosine hydrocarbons on the microflora of a moorland soil. Nature 227 (5263):1166. doi: 10.1038/2271166a0.
  • Kumar, M., V. Leon, A. De Sisto Materano, and O. A. Ilzins. 2006. Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria. Polish Journal of Microbiology 55 (2):139–146.
  • Lima, Á. S., and R. M. Alegre. 2009. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913. Brazilian Archives of Biology and Technology 52 (2):285–290. doi: 10.1590/S1516-89132009000200004.
  • Ma, M., Zheng, L. X. Yin, W. Gao, B. Han, Q. Li, A. Zhu, H. Chen, H. Yang. and H. 2021. Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge. Scientific Reports 11 (1):14. doi: 10.1038/s41598-021-80991-5.
  • Marchand, C., M. St-Arnaud, W. Hogland, T. H. Bell, and M. Hijri. 2017. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. International Biodeterioration & Biodegradation 116:48–57. doi: 10.1016/j.ibiod.2016.09.030.
  • Margesin, R., and F. Schinner. 1997. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in alpine soils. Applied and Environmental Microbiology 63 (7):2660–4. doi: 10.1128/aem.63.7.2660-2664.1997.
  • Matsuyama, T., T. Tanikawa, and Y. Nakagawa. 2011. Serrawettins and other surfactants produced by Serratia. In Biosurfactants: From genes to applications, ed. G. Soberón-Chávez, 93–120. Berlin, Heidelberg: Springer.
  • McGenity, T. J., B. D. Folwell, B. A. McKew, and G. O. Sanni. 2012. Marine crude-oil biodegradation: A central role for interspecies interactions. Aquatic Biosystems 8 (1):10. doi: 10.1186/2046-9063-8-10.
  • Meckenstock, R. U., F. von Netzer, C. Stumpp, T. Lueders, A. M. Himmelberg, N. Hertkorn, P. Schmitt-Kopplin, M. Harir, R. Hosein, S. Haque, et al. 2014. Oil biodegradation. Water droplets in oil are microhabitats for microbial life. Science (New York, N.Y.) 345 (6197):673–6. doi: 10.1126/science.1252215.
  • Men, Y., H. Feil, N. C. VerBerkmoes, M. B. Shah, D. R. Johnson, P. K. Lee, K. A. West, S. H. Zinder, G. L. Andersen, and L. Alvarez-Cohen. 2012. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: Global transcriptomic and proteomic analyses. ISME Journal 6 (2):410–21. doi: 10.1038/ismej.2011.111.
  • Mnif, I., S. Mnif, R. Sahnoun, S. Maktouf, Y. Ayedi, S. Ellouze-Chaabouni, and D. Ghribi. 2015. Biodegradation of diesel oil by a novel microbial consortium: Comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environmental Science and Pollution Research International 22 (19):14852–61. doi: 10.1007/s11356-015-4488-5.
  • Mohammed, D., A. Ramsubhag, and D. M. Beckles. 2007. An assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes. Water, Air, and Soil Pollution 182 (1-4):349–56. doi: 10.1007/s11270-007-9346-8.
  • Mohanty, S., J. Jasmine, and S. Mukherji. 2013. Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. BioMed Research International 2013:328608. doi: 10.1155/2013/328608.
  • Mulchansingh, V. C. 1971. The oil industry in the economy of Trinidad. Caribbean Studies 11:73–100.
  • Persad, K. M., and C. Archie. 2016. History of petroleum exploration in Trinidad and Tobago. In AAPG/SEG International Conference & Exhibition, Cancun, Mexico, September 6–9.
  • Pinholt, Y., S. Struwe, and A. Kjøller. 1979. Microbial changes during oil decomposition in soil. Ecography 2 (3):195–200. doi: 10.1111/j.1600-0587.1979.tb00701.x.
  • Poddar, K., D. Sarkar, and A. Sarkar. 2019. Construction of potential bacterial consortia for efficient hydrocarbon degradation. International Biodeterioration & Biodegradation 144:104770. doi: 10.1016/j.ibiod.2019.104770.
  • Ramdass, A. C., and S. N. Rampersad. 2021. Diversity and oil degradation potential of culturable microbes isolated from chronically contaminated soils in Trinidad. Microorganisms 9 (6):1167. doi: 10.3390/microorganisms9061167.
  • Ramoutar, S., A. Mohammed, and A. Ramsubhag. 2019. Laboratory-scale bioremediation potential of single and consortia fungal isolates from two natural hydrocarbon seepages in Trinidad, West Indies. Bioremediation Journal 23 (3):131–41. doi: 10.1080/10889868.2019.1640181.
  • RStudio: Integrated Development Environment for R (version 1.3.1093). 2020. Boston, MA: RStudio, PBC.
  • Sajna, K. V., R. K. Sukumaran, L. D. Gottumukkala, and A. Pandey. 2015. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology 191:133–9. doi: 10.1016/j.biortech.2015.04.126.
  • Santisi, S.,. S. Cappello, M. Catalfamo, G. Mancini, M. Hassanshahian, L. Genovese, L. Giuliano, and M. M. Yakimov. 2015. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology] 46 (2):377–87. doi: 10.1590/S1517-838246120131276.
  • Silva, A. C. S. d., P. N. d Santos, T. A. L. e Silva, R. F. S. Andrade, and G. M. Campos-Takaki. 2018. Biosurfactant production by fungi as a sustainable alternative. Arquivos Do Instituto Biológico 85:1–12. doi: 10.1590/1808-1657000502017.
  • Shahab, R. L., J. S. Luterbacher, S. Brethauer, and M. H. Studer. 2018. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium. Biotechnology and Bioengineering 115 (5):1207–15. doi: 10.1002/bit.26541.
  • Szulc, A., D. Ambrożewicz, M. Sydow, Ł. Ławniczak, A. Piotrowska-Cyplik, R. Marecik, and Ł. Chrzanowski. 2014. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: Feasibility during field studies. Journal of Environmental Management 132:121–8. doi: 10.1016/j.jenvman.2013.11.006.
  • Tao, K., X. Liu, X. Chen, X. Hu, L. Cao, and X. Yuan. 2017. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresource Technology 224:327–32. doi: 10.1016/j.biortech.2016.10.073.
  • Varjani, S. J., and V. N. Upasani. 2016. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresource Technology 221:510–6. doi: 10.1016/j.biortech.2016.09.080.
  • Varjani, S. J., and V. N. Upasani. 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation 120:71–83. doi: 10.1016/j.ibiod.2017.02.006.
  • Wang, C., X. Liu, J. Guo, Y. Lv, and Y. Li. 2018. Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China. Ecotoxicology and Environmental Safety 159:20–7. doi: 10.1016/j.ecoenv.2018.04.059.
  • Wang, L., F. Li, Y. Zhan, and L. Zhu. 2016. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environmental Science and Pollution Research International 23 (14):14451–61. doi: 10.1007/s11356-016-6630-4.
  • Xu, X.,. W. Liu, S. Tian, W. Wang, Q. Qi, P. Jiang, X. Gao, F. Li, H. Li, and H. Yu. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Frontiers in Microbiology 9:2885. doi: 10.3389/fmicb.2018.02885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.