169
Views
2
CrossRef citations to date
0
Altmetric
Articles

Biochar amendment aids in the reduction of antibiotic-resistant bacteria and heavy metals during composting of poultry litter

, & ORCID Icon
Pages 382-399 | Published online: 20 Jun 2022

References

  • Alaboudi, K. A., B. Ahmed, and G. Brodie. 2019. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Annals of Agricultural Sciences 64 (1):95–102. doi: 10.1016/j.aoas.2019.04.002.
  • Alavi, N., K. Sarmadi, G. Goudarzi, A. A. Babaei, R. Bakhshoodeh, and P. Paydary. 2019. Attenuation of tetracyclines during chicken manure and bagasse co-composting: Degradation, kinetics, and artificial neural network modeling. Journal of Environmental Management 231:1203–10. doi: 10.1016/j.jenvman.2018.11.003.
  • Alhaji, N. B., A. E. Haruna, B. Muhammad, M. K. Lawan, and T. O. Isola. 2018. Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Preventive Veterinary Medicine 154:139–47. doi: 10.1016/j.prevetmed.2018.04.001.
  • Ameen, A., J. Ahmad, and S. Raza. 2016. Effect of pH and moisture content on composting of municipal solid waste. International Journal of Scientific and Research Publications 6 (5):35–7.
  • APHA. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation.
  • Awasthi, K. M., T. Liu, H. Chen, S. Verma, Y. Duan, S. K. Awasthi, Q. Wang, W. Ren, J. Zhao, and Z. Zhang. 2019. The behavior of antibiotic resistance genes and their associations with bacterial community during poultry manure composting. Bioresource Technology 280:70–8. doi: 10.1016/j.biortech.2019.02.030.
  • Bao, J., X. Wang, J. Gu, X. Dai, K. Zhang, Q. Wang, J. Ma, and H. Peng. 2020. Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting. Bioresource Technology 295:121997. doi: 10.1016/j.biortech.2019.121997.
  • Bolan, N. S., A. A. Szogi, T. Chuasavathi, B. Seshadri, M. J. Rothrock, Jr, and P. Panneerselvam. 2010. Uses and management of poultry litter. World's Poultry Science Journal 66 (4):673–98. doi: 10.1017/S0043933910000656.
  • Brito, L. M., I. Mourao, J. Coutinho, and S. R. Smith. 2012. Simple technologies for on-farm composting of cattle slurry solid fraction. Waste Management 32 (7):1332–40. doi: 10.1016/j.wasman.2012.03.013.
  • Chaher, N. H., M. Chakchouk, N. Engler, A. Nassour, M. Nelles, and M. Hamdi. 2020. Optimization of food waste and biochar in-vessel co-composting. Sustainability 12 (4):1356. doi: 10.3390/su12041356.
  • Chen, B., and M. Yuan. 2011. Enhanced sorption of poly aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments 11 (1):62–71. doi: 10.1007/s11368-010-0266-7.
  • Chen, C., A. C. Pankow, M. Oh, S. L. Heath, L. Zhang, P. Du, K. Xia, and A. Pruden. 2019. Effect of antibiotic use and composting on antibiotic resistant genes abundance and resistome risk of soil receiving manure-derived amendment. Environment International 128:233–43. doi: 10.1016/j.envint.2019.04.043.
  • Chen, X., Y. Zhao, C. Zhang, D. Zhang, C. Yao, Q. Meng, R. Zhao, and Z. Wei. 2020. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed. Journal of Environmental Management 272:111109. doi: 10.1016/j.jenvman.2020.111109.
  • Chennaoui, M., Y. Salama, B. Aouinty, M. Mountadar, and O. Assobhei. 2018. Evolution of bacterial and fungal flora during in-vessel composting of organic household waste under air pressure. Journal of Materials and Environmental Science 9 (2):680–8. doi: 10.26872/jmes.2018.9.2.75.
  • Chibuike, G. U., and S. C. Obiora. 2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science 2014:1–12. doi: 10.1155/2014/752708.
  • Emana, A., and G. Y. Hirpha. 2021. Physicochemical evaluation of composts produced from coffee pulp and some locally available organic matter at Dale District Ethiopia. Journal of Petroleum and Environmental Biotechnology 12 (6):1000427.
  • Ezugworie, F. N., V. C. Igbokwe, and C. O. Onwosi. 2021. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. The Science of the Total Environment 784:147191. doi: 10.1016/j.scitotenv.2021.147191.
  • Febrisiantosa, A., B. Ravindran, and H. L. Choi. 2018. The effect of co-additives (biochar and FGD gypsum) on ammonia volatilization during the composting of livestock waste. Sustainability 10 (3):795. doi: 10.3390/su10030795.
  • Ghasemi, A., and S. Zahediasl. 2012. Normality tests for statistical analysis: A guide for non-statisticians. International Journal of Endocrinology and Metabolism 10 (2):486–9. doi: 10.5812/ijem.3505.
  • Gou, M., H. W. Hu, Y. J. Zhang, J. T. Wang, H. Hayden, Y. Q. Tang, and J. Z. He. 2018. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. The Science of the Total Environment 612:1300–10. doi: 10.1016/j.scitotenv.2017.09.028.
  • Gupta, G., J. Borowiec, and J. Okoh. 1997. Toxicity identification of poultry litter aqueous leachate. Poultry Science 76 (10):1364–7. doi: 10.1093/ps/76.10.1364.
  • Hagemann, N., S. Joseph, H.-P. Schmidt, C. I. Kammann, J. Harter, T. Borch, R. B. Young, K. Varga, S. Taherymoosavi, K. W. Elliott, et al. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications 8 (1):1089. doi: 10.1038/s41467-017-01123-0.
  • Hansson, A., S. Haikola, M. Fridahl, P. Yanda, E. Mabhuye, and N. Pauline. 2021. Biochar as multi-purpose sustainable technology: Experiences from projects in Tanzania. Environment, Development and Sustainability 23 (4):5182–214. doi: 10.1007/s10668-020-00809-8.
  • IPCC. 2018. Global Warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development and efforts to eradicate poverty, eds. V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Reports, J. Skea, P. R. SHukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycocok, M. Tignor, T. Waterfield. Geneva, Switzerland: World Meteorological Organization, 32 pp. https://www.ipcc.ch/sr15/.
  • Jain, M. S., M. Daga, and A. S. Kalamdhad. 2018a. Composting physics: A science behind bio-degradation of lignocellulose aquatic waste amended with inoculum and bulking agent. Process Safety and Environmental Protection 116:424–32. doi: 10.1016/j.psep.2018.03.017.
  • Jain, M. S., R. Jambhulkar, and A. S. Kalamdhad. 2018b. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties. Bioresource Technology 253:204–13. doi: 10.1016/j.biortech.2018.01.038.
  • Jalili, M., M. Mokhtari, H. Eslami, F. Abbasi, R. Ghanbari, and A. A. Ebrahimi. 2019. Toxicity evaluation and management of co-composting pistachio wastes combined with cattle manure and municipal sewage sludge. Ecotoxicology and Environmental Safety 171:798–804. doi: 10.1016/j.ecoenv.2019.01.056.
  • Kang, Y., Q. Li, D. Xia, M. Shen, L. Mei, and J. Hu. 2017. Short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil. Journal of Hazardous Materials 340:213–20. doi: 10.1016/j.jhazmat.2017.07.015.
  • Karanja, A. W., E. M. Njeru, and J. M. Maingi. 2019. Assessment of physicochemical changes during composting rice straw with chicken and donkey manure. International Journal of Recycling of Organic Waste in Agriculture 8 (S1):65–72. doi: 10.1007/s40093-019-0270-x.
  • Kim, E., D. Lee, S. Won, and H. Ahn. 2016. Evaluation of optimum moisture content for composting of beef manure and bedding material mixtures using oxygen uptake measurement. Asian-Australasian Journal of Animal Sciences 29 (5):753–8. doi: 10.5713/ajas.15.0875.
  • Krause, A., and V. S. Rotter. 2018. Recycling improves soil fertility management in smallholdings in Tanzania. Agriculture 8 (3):31. doi: 10.3390/agriculture8030031.
  • Laird, D., P. Fleming, B. Q. Wang, R. Horton, and D. KArlen. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158 (3–4):436–42. doi: 10.1016/j.geoderma.2010.05.012.
  • Li, H., W. Cheng, B. Li, Y. Xu, and X. Zheng. 2020. The fate of antibiotic resistance genes during co-composting of swine manure with cauliflower and corn straw. Bioresource Technology 300:122669. doi: 10.1016/j.biortech.2019.122669.
  • Lu, C., J. Gu, X. Wang, J. Lu, K. Zhang, X. Zhang, and R. Zhang. 2018. Effects of coal gasification slag on antibiotic resistance genes and the bacterial community during swine manure composting. Bioresource Technology 268:20–7. doi: 10.1016/j.biortech.2018.07.086.
  • Mahmoud, M. A. M., and H. S. Abdel-Mohsein. 2019. Hysterical tetracycline in intensive poultry farms accountable for substantial gene resistance, health and ecological risk in Egypt- manure and fish. Environmental Pollution (Barking, Essex: 1987) 255 (Pt 1):113039. doi: 10.1016/j.envpol.2019.113039.
  • Masse, D. I., M. Noori, C. Saady, and Y. Gilbert. 2014. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals: An Open Access Journal from MDPI 4 (2):146–63. doi: 10.3390/ani4020146.
  • Musa, W. I., L. Sàidu, B. Y. Kaltungo, U. B. Abubakar, and A. M. Wakawa. 2012. Poultry litter selection, management and utilization in Nigeria. Asian Journal of Poultry Science 6 (2):44–55. doi: 10.3923/ajpsaj.2012.44.55.
  • Narzari, R., N. Bordoloi, R. S. Chutia, B. Borkotoki, N. Gogoi, A. Bora, and R. Kataki. 2015. Biochar: An overview on its production, properties and potential benefits. Biology, Biotechnology and Sustainable Development 1:13–40. doi: 10.13140/RG.2.1.3966.2560.
  • Nguyen, C. C., C. N. Hugie, M. L. Kile, and T. Navab-Daneshmand. 2019. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science and Engineering 13:46. doi: 10.1007/s11783-019-1129-0.
  • Onyeneke, R. U., C. C. Emenekwe, N. M. Chidiebere-Mark, J. O. Munonye, J. O. Aligbe, C. Kanu, C. U. Izuogu, C. L. Njoku, U. I. Uwazie, C. O. Uwadoka, et al. 2020. Impact of poultry farmers’ participation in modern food retail markets on household dietary diversity: Lessons from Southeast Nigeria. Animals 10 (4):611. doi: 10.3390/ani10040611.
  • Oyewusi, T. F., J. A. Osunbitan, G. A. Ogunwande, and A. O. Omotosho. 2021. Investigation into physico-chemical properties of compost extract as affected by processing parameters. Environmental Challenges 5:100370. doi: 10.1016/j.envc.2021.100370.
  • Oztuna, D., A. H. Elhan, and E. Tuccar. 2006. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turkish Journal of Medical Sciences 36 (3):171–6.
  • Pruden, A., D. G. Larsson, A. Amézquita, P. Collignon, K. K. Brandt, D. W. Graham, J. M. Lazorchak, S. Suzuki, P. Silley, J. R. Snape, et al. 2013. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environmental Health Perspectives 121 (8):878–85. doi: 10.1289/ehp.1206446.
  • Pu, C., Y. Yu, J. Diao, X. Gong, J. Li, and Y. Sun. 2019. Exploring the persistence and spreading of antibiotic resistance from manure to biocompost, soils and vegetables. The Science of the Total Environment 688:262–9. doi: 10.1016/j.scitotenv.2019.06.081.
  • Rehana, M. R., B. Joseph, and R. Gladis. 2020. Heavy metal stabilization in sewage sludge composting process. Current Journal of Applied Science and Technology 39 (19):38–48. doi: 10.9734/cjast/2020/v39i1930789.
  • Rehman, H. A., and R. Razzaq. 2017. Benefits of biochar on the agriculture and environment- A review. Journal of Environmental Analytical Chemistry 4 (3):207. doi: 10.4172/2380-2391.1000207.
  • Sanchez-Monedero, M. A., M. L. Cayuela, A. Roig, K. Jindo, C. Mondini, and N. Bolan. 2018. Role of biochar as an additive in organic waste composting. Bioresource Technology 247:1155–64. doi: 10.1016/j.biortech.2017.09.193.
  • Schaider, L. A., K. M. Rodgers, and R. A. Rudel. 2017. Review of organic wastewater compound concentrations and removal in onsite wastewater treatment Systems. Environmental Science & Technology 51 (13):7304–17. doi: 10.1021/acs.est.6b04778.
  • Shan, G., W. Li, Y. Gao, W. Tan, and B. Xi. 2021. Additives for reducing nitrogen loss during composting: A review. Journal of Cleaner Production 307:127308. doi: 10.1016/j.jclepro.2021.127308.
  • Soobhany, N. 2018. Preliminary evaluation of pathogenic bacteria loading on organic municipal solid waste compost and vermicompost. Journal of Environmental Management 206:763–7. doi: 10.1016/j.jenvman.2017.11.029.
  • Soobhany, N. 2019. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. Journal of Cleaner Production 241:118413. doi: 10.1016/j.jclepro.2019.118413.
  • Tang, Z., B. Xi, C. Huang, W. Tan, W. Li, X. Zhao, K. Liu, and X. Xia. 2020. Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. Bioresource Technology 301:122723. doi: 10.1016/j.biortech.2019.122723.
  • Vandecasteele, B., T. Sinicco, T. D'Hose, T. Vanden Nest, and C. Mondini. 2016. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management 168:200–9. doi: 10.1016/j.jenvman.2015.11.045.
  • Wang, G., Y. Yang, Y. Kong, R. Ma, J. Yuan, and G. Li. 2022. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. Journal of Hazardous Materials 421:126809. doi: 10.1016/j.jhazmat.2021.126809.
  • Wang, L., G. Chen, G. Owens, and J. Zhang. 2016. Enhanced antibiotic removal by the addition of bamboo charcoal during pig manure composting. RSC Advances 6 (33):27575–83. doi: 10.1039/C5RA27493A.
  • Wang, L., J. Wang, J. Wang, L. Zhu, L. Yang, and R. Yang. 2019. Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. The Science of the Total Environment 695:133781. doi: 10.1016/j.scitotenv.2019.133781.
  • Wang, Q., M. K. Awasthi, X. Ren, J. Zhao, R. Li, Z. Wang, M. Wang, H. Chen, and Z. Zhang. 2018. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Management (New York, N.Y.) 74:221–30. doi: 10.1016/j.wasman.2018.01.015.
  • Wei, Y., Y. Zhao, M. Shi, Z. Cao, Q. Lu, T. Yang, Y. Fan, and Z. Wei. 2018. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology 247:190–9. doi: 10.1016/j.biortech.2017.09.092.
  • Woolf, D., J. E. Amonette, F. A. Street-Perrott, and J. Lehmann. 2010. Sustainable biochar to mitigate global climate change. Nature 1:56. doi: 10.1038/ncomms1053.
  • Wyłomańska, A., D. R. Iskander, and K. Burnecki. 2020. Omnibus test for normality based on the Edgeworth expansion. PloS One 15 (6):e0233901. doi: 10.1371/journal.pone.0233901.
  • Xiao, R., J. Bai, Q. Wang, H. Gao, L. Huang, and X. Liu. 2011. Assessment of heavy metal contamination of wetland soils from a typical aquatic–terrestrial ecotone in Haihe River basin, North China. Clean - Soil, Air, Water 39 (7):612–8. doi: 10.1002/clen.201000255.
  • Xiao, R., M. K. Awasthi, R. Li, J. Park, S. M. Pensky, Q. Wang, J. J. Wang, and Z. Zhang. 2017. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresource Technology 246:203–13. doi: 10.1016/j.biortech.2017.07.090.
  • Xie, W. Y., Q. Shen, and F. J. Zhao. 2018. Antibiotics and antibiotic resistance from animal manures to soil: A review: Antibiotics and antibiotic resistance. European Journal of Soil Science 69 (1):181–95. doi: 10.1111/ejss.12494.
  • Xu, Q., X. Li, R. Ding, D. Wang, Y. Liu, Q. Wang, J. Zhao, F. Chen, G. Zeng, Q. Yang, et al. 2017. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Research 124:269–79. doi: 10.1016/j.watres.2017.07.067.
  • Yang, K., L. Zhu, Y. Zhao, Z. Wei, X. Chen, C. Yao, Q. Meng, and R. Zhao. 2019. A novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials. Bioresource Technology 293:122095. doi: 10.1016/j.biortech.2019.122095.
  • Yap, B. W., and C. H. Sim. 2011. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation 81 (12):2141–55. doi: 10.1080/00949655.2010.520163.
  • Yazdankhah, S., E. Skjerve, and Y. Wasteson. 2018. Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microbial Ecology in Health and Disease 29 (1):1548248. doi: 10.1080/16512235.2018.1548248.
  • Yin, Z., L. Zhang, and R. Li. 2021. Effects of additives on physical, chemical, and microbiological properties during green waste composting. Bioresource Technology 340:125719. doi: 10.1016/j.biortech.2021.125719.
  • Youngquist, C. P., S. M. Mitchell, and C. G. Cogger. 2016. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. Journal of Environmental Quality 45 (2):537–45. doi: 10.2134/jeq2015.05.0256.
  • Yu, Y., L. Chen, Y. Fang, X. Jia, and J. Chen. 2019. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting. Journal of Hazardous Materials 380:120862. doi: 10.1016/j.jhazmat.2019.120862.
  • Zakarya, I. A., S. N. B. Khalib, and M. N. Ramzi. 2018. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms. E3S Web of Conferences 34:02019. doi: 10.1051/e3sconf/20183402019.
  • Zittel, R., P. Pinto da Silva, C. E. Domingues, D. C. H. Seremeta, K. Marcondes da Cunha, and S. Xavier de Campos. 2020. Availability of nutrients, removal of nicotine, heavy metals and pathogens in compounds obtained from smuggled cigarette tobacco compost associated with industrial sewage sludge. The Science of the Total Environment 699:134377. doi: 10.1016/j.scitotenv.2019.134377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.