327
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enzymes analysis, degradation kinetics, response surface optimization and heavy metal tolerance of the biodegradation of malachite green by Stenotrophomonas koreensis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 133-155 | Published online: 12 Nov 2022

References

  • Adebayo, M. A., J. I. Adebomi, T. O. Abe, and F. I. Areo. 2020. Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloid and Interface Science Communications 38:100311–21. doi: 10.1016/j.colcom.2020.100311.
  • Alaya, V., R. K. Kodi, E. Ninganna, B. Gowda, and M. B. Shivanna. 2021. Decolorization of Malachite green dye by Stenotrophomonas maltophilia a compost bacterium. Bulletin of the National Research Centre 45 (1):13. doi: 10.1186/s42269-021-00518-w.
  • Alonso, A., P. Sanchez, and J. L. Martínez. 2000. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrobial Agents and Chemotherapy 44 (7):1778–82. doi: 10.1128/AAC.44.7.1778-1782.2000.
  • Amani Denji, K., M. Soltani, H. Rajabi Islami, and A. Kamali. 2020. The antifungal effect of Allium sativum and Artemisia sieberia extracts on hatching and survival of Oncorhynchus mykiss larvae. Iranian Journal of Fisheries Sciences 19:669–80.
  • Asses, N., L. Ayed, N. Hkiri, and M. Hamdi. 2018. Congo red decolorization and detoxification by Aspergillus niger: Removal mechanisms and dye degradation pathway. BioMed Research International 2018:3049686. doi: 10.1155/2018/3049686.
  • Banerjee, M., and L. Yesmin. 2002. Sulfur-oxidizing plant growth promoting rhizobacteria for enhanced canola performance. US Patent 7,517,687 B2 filed August 24, 2007 and issued April 14, 2009.
  • Barapatre, A., and H. Jha. 2020. Microbial degradation of malachite green. In Malachite green properties and uses, ed. R. M. Laursen. 113–53, 1st ed. New York: Nova Science Publishers.
  • Berg, G., D. Egamberdieva, B. Lugtenberg, and M. Hagemann. 2010. Symbiotic plant-microbe interactions: Stress protection, plant growth promotion and biocontrol by Stenotrophomonas. Symbioses and Stress: Joint Ventures in Biology 17:445–60.
  • Berkani, M., M. K. Bouchareb, M. Bouhelassa, and Y. Kadmi. 2020. Photocatalytic degradation of industrial dye in semi-pilot scale prototype solar photoreactor: Optimization and modeling using ANN and RSM based on box–Wilson approach. Topics in Catalysis 63 (11–14):964–75. doi: 10.1007/s11244-020-01320-0.
  • Biswas, S., and P. Basak. 2021. Biosorption of the industrial dye remazol brilliant blue R by Bacillus rigiliprofundi. Microbiology 90 (6):816–28. doi: 10.1134/S0026261721090010.
  • Brooke, J. S. 2012. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clinical Microbiology Reviews 25 (1):2–41. doi: 10.1128/CMR.00019-11.
  • Camargo, F. P., Sérgio Tonello, P. dos Santos, A. C. A., and Duarte, I. C. S. 2016. Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—a review. Water, Air, & Soil Pollution 227 (12):1–11. doi: 10.1007/s11270-016-3141-3.
  • Carolin, C. F., P. S. Kumar, and G. J. Joshiba. 2021. Sustainable approach to decolorize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technologies and Environmental Policy 23 (1):173–81. doi: 10.1007/s10098-020-01934-8.
  • Chaturvedi, V., and P. Verma. 2015. Biodegradation of malachite green by a novel copper-tolerant Ochrobactrum pseudogrignonense strain GGUPV1 isolated from copper mine waste water. Bioresources and Bioprocessing 2 (1):9. doi: 10.1186/s40643-015-0070-8.
  • Chung, K. T. 2016. Azo dyes and human health: A review. Journal of Environmental Science and Health, Part C 34 (4):233–61. doi: 10.1080/10590501.2016.1236602.
  • Cui, D., H. Zhang, R. He, and M. Zhao. 2016. The comparative study on the rapid decolorization of Azo, anthraquinone and triphenylmethane dyes by anaerobic sludge. International Journal of Environmental Research and Public Health 13 (11):1053–70. doi: 10.3390/ijerph13111053.
  • Das, D., D. Charumathi, and N. Das. 2010. Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189. Journal of Hazardous Materials 183 (1-3):497–505. doi: 10.1016/j.jhazmat.2010.07.051.
  • Du, L. N., S. Wang, G. Li, B. Wang, X. M. Jia, Y. H. Zhao, and Y. L. Chen. 2011a. Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: Characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology (London, England) 20 (2):438–46. doi: 10.1007/s10646-011-0595-3.
  • Du, L. N., M. Zhao, G. Li, X. P. Zhao, and Y. H. Zhao. 2011b. Highly efficient decolorization of malachite green by a novel Micrococcus sp. strain BD15. Environmental Science and Pollution Research International 19 (7):2898–907. doi: 10.1007/s11356-012-0796-1.
  • Du, L. N., M. Zhao, G. Li, F. C. Xu, W. H. Chen, and Y. H. Zhao. 2013. Biodegradation of malachite green by Micrococcus sp. strain BD15: Biodegradation pathway and enzyme analysis. International Biodeterioration & Biodegradation 78:108–16. doi: 10.1016/j.ibiod.2012.12.011.
  • Du, L. N., G. Li, Y. H. Zhao, H. K. Xu, Y. Wang, Y. Zhou, and L. Wang. 2015. Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: Characteristics and partial mechanism. International Biodeterioration & Biodegradation 105:66–72. doi: 10.1016/j.ibiod.2015.08.019.
  • Du, L. N., K. K. Pan, G. Li, Y. Y. Yang, and F. C. Xu. 2018. Efficient degradation of Malachite Green by Aeromonas sp. strain DH-6. Applied and Environmental Microbiology 3:1–8.
  • Elfarash, A., A. M. Mawad, N. M. Yousef, and A. A. Shoreit. 2017. Azoreductase kinetics and gene expression in the synthetic dyes-degrading Pseudomonas. Egyptian Journal of Basic and Applied Sciences 4 (4):315–22. doi: 10.1016/j.ejbas.2017.07.007.
  • Etezad, S. M., and M. Sadeghi-Kiakhani. 2021. Decolorization of malachite green dye solution by bacterial biodegradation. Progress in Color. Colorants and Coatings 14:79–87.
  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution; International Journal of Organic Evolution 39 (4):783–91. doi: 10.1111/j.1558-5646.1985.tb00420.x.
  • Galai, S., F. Limam, and M. N. Marzouki. 2009. A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes. Applied Biochemistry and Biotechnology 158 (2):416–31. doi: 10.1007/s12010-008-8369-y.
  • Galai, S., Y. Touhami, and M. N. Marzouki. 2012. Response surface methodology applied to laccases activities exhibited by Stenotrophomonas maltophilia AAP56 in different growth conditions. BioResources 7:0706–26.
  • Gao, F., H. Ding, Z. Feng, D. Liu, and Y. Zhao. 2014. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein. Bioresource Technology 169:181–7. doi: 10.1016/j.biortech.2014.06.093.
  • Garg, S. K., and M. Tripathi. 2017. Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Research Journal of Microbiology 12 (1):1–19. doi: 10.3923/jm.2017.1.19.
  • Gopinath, K. P., M. N. Kathiravan, R. Srinivasan, and S. Sankaranarayanan. 2011. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresource Technology 102 (4):3687–93. doi: 10.1016/j.biortech.2010.11.072.
  • Hafeez, F., H. Farheen, F. Mahmood, T. Shahzad, M. Shahid, M. Iqbal, S. Rasul, H. Manzoor, and S. Hussain. 2018. Isolation and characterization of a lead (Pb) tolerant Pseudomonas aeruginosa strain HF5 for decolorization of reactive red-120 and other azo dyes. Annals of Microbiology 68 (12):943–52. doi: 10.1007/s13213-018-1403-6.
  • Halimoon, N., and R. G. S. Yin. 2010. Removal of heavy metals from textile wastewater using zeolite. Environment Asia 3:124–30.
  • Han, S., W. Han, J. Chen, Y. Sun, M. Dai, and G. Zhao. 2020. Bioremediation of malachite green by cyanobacterium Synechococcus elongatus PCC 7942 engineered with a triphenylmethane reductase gene. Applied Microbiology and Biotechnology 104 (7):3193–204. doi: 10.1007/s00253-020-10438-w.
  • Harrison, J. J., H. Ceri, C. A. Stremick, and R. J. Turner. 2004. Biofilm susceptibility to metal toxicity. Environmental Microbiology 6 (12):1220–7. doi: 10.1111/j.1462-2920.2004.00656.x.
  • Hassaan, M. A., A. El Nemr, and A. Hassaan. 2017. Health and environmental impacts of dyes: Mini review. American Journal of Environmental Science and Engineering 3:64–7.
  • Hatvani, N., and I. Mécs. 2003. Effects of certain heavy metals on the growth, dye decolorization, and enzyme activity of Lentinula edodes. Ecotoxicology and Environmental Safety 55 (2):199–203.
  • Hinderliter, P., and S. A. Saghir. 2014. Pharmacokinetics. In Encyclopedia of toxicology, 3rd ed., 849–55. London: Academic Press.
  • Hobman, J. L., and L. C. Crossman. 2015. Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology 64 (Pt 5):471–97. doi: 10.1099/jmm.0.023036-0.
  • Hou, H., J. Zhou, J. Wang, C. Du, and B. Yan. 2004. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochemistry 39 (11):1415–9. doi: 10.1016/S0032-9592(03)00267-X.
  • Islam, M. A., Ali, I. Karim, S. A. Firoz, M. S. H. Chowdhury, A. N. Morton, D. W., and Angove, M. J. 2019. Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering 32:100911–31. doi: 10.1016/j.jwpe.2019.100911.
  • Ismail, M., Akhtar, K. Khan, M. I. Kamal, T. Khan, M. A. M. Asiri, A. Seo, J, and Khan, S. B. 2019. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Current Pharmaceutical Design 25 (34):3645–63.
  • Jadhav, J. P., and S. P. Govindwar. 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast (Chichester, England) 23 (4):315–23. doi: 10.1002/yea.1356.
  • Jang, M. S., Y. M. Lee, C. H. Kim, J. H. Lee, D. W. Kang, S. J. Kim, and Y. C. Lee. 2005. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: Purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Applied and Environmental Microbiology 71 (12):7955–60.
  • Jasińska, A., S. Różalska, P. Bernat, K. Paraszkiewicz, and J. Długoński. 2012. Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration & Biodegradation 73:33–40. doi: 10.1016/j.ibiod.2012.06.025.
  • Khalid, A., J. Arshad, S. Mahmood, I. Aziz, and M. Arshad. 2015. Effect of chromium forms on the biodegradation of reactive black-5 azo dye by Psychrobacter and Klebsiella species. International Journal of Agriculture and Biology 17 (6):1260–4. doi: 10.17957/IJAB/14.0038.
  • Khan, I., K. Saeed, N. Ali, I. Khan, B. Zhang, and M. Sadiq. 2020. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. Journal of Environmental Chemical Engineering 8 (5):104364–77. doi: 10.1016/j.jece.2020.104364.
  • Koupaie, E. H., M. A. Moghaddam, and S. H. Hashemi. 2012. Investigation of decolorization kinetics and biodegradation of azo dye Acid Red 18 using sequential process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor. International Biodeterioration & Biodegradation 71:43–9. doi: 10.1016/j.ibiod.2012.04.002.
  • Kumari, M, and S. K. Gupta. 2019. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)-An endeavor to diminish probable cancer risk. Scientific Reports 9 (1):11. doi: 10.1038/s41598-019-54902-8.
  • Levin, L., E. Melignani, and A. M. Ramos. 2010. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource Technology 101 (12):4554–63. doi: 10.1016/j.biortech.2010.01.102.
  • Liba, C. M., Ferrara, F. Manfio, G. P. Fantinatti, Garboggini, F. Albuquerque, R. C. Pavan, C. Ramos, P. L. Moreira, Filho, C. A, and Barbosa, H. R. 2006. Nitrogen‐fixing chemo‐organotrophic bacteria isolated from cyanobacteria‐deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Journal of Applied Microbiology 101 (5):1076–86. doi: 10.1111/j.1365-2672.2006.03010.x.
  • Liu, S., X. Xu, Y. Kang, Y. Xiao, and H. Liu. 2020. Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. Royal Society Open Science 7 (9):200688–703. doi: 10.1098/rsos.200688.
  • Lofrano, G., M. Carotenuto, G. Libralato, R. F. Domingos, A. Markus, L. Dini, R. K. Gautam, D. Baldantoni, M. Rossi, S. K. Sharma, et al. 2016. Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview. Water Research 92:22–37. doi: 10.1016/j.watres.2016.01.033.
  • Looney, W. J., M. Narita, and K. Mühlemann. 2009. Stenotrophomonas maltophilia: An emerging opportunist human pathogen. The Lancet. Infectious Diseases 9 (5):312–23. doi: 10.1016/S1473-3099(09)70083-0.
  • Lorenzo, M., D. Moldes, and M. Á. Sanromán. 2006. Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolorise dyes. Chemosphere 63 (6):912–7. doi: 10.1016/j.chemosphere.2005.09.046.
  • Lv, G. Y., J. H. Cheng, X. Y. Chen, Z. F. Zhang, and L. F. Fan. 2013. Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresource Technology 144:275–80. doi: 10.1016/j.biortech.2013.07.003.
  • Ma, R., W. Fang, H. Zhang, J. Sun, H. Su, T. Chen, and K. Hu. 2020. Transcriptome analysis of zebra fish (Danio rerio) eggs following treatment with malachite green. Aquaculture 514:734500. doi: 10.1016/j.aquaculture.2019.734500.
  • Mittelstaedt, R. A., N. Mei, P. J. Webb, J. G. Shaddock, V. N. Dobrovolsky, L. J. McGarrity, S. M. Morris, T. Chen, F. A. Beland, K. J. Greenlees, et al. 2004. Genotoxicity of malachite green and leucomalachite green in female Big Blue B6C3F1 mice. Mutation Research 561 (1–2):127–38. doi: 10.1016/j.mrgentox.2004.04.003.
  • Modi, H. A., G. Rajput, and C. Ambasana. 2010. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresource Technology 101 (16):6580–3.
  • Mostafa, A. A. F., A. A. Al-Askar, T. M. Dawoud, F. Ameen, and M. T. Yassin. 2020. In vitro evaluation of antifungal activity of some agricultural fungicides against two saprolegnoid fungi infecting cultured fish. Journal of King Saud University – Science 32 (7):3091–6. doi: 10.1016/j.jksus.2020.08.019.
  • Muñiz-Márquez, D. B., J. E. Wong-Paz, J. C. Contreras-Esquivel, R. Rodriguez-Herrera, and C. N. Aguilar. 2019. Extraction of phenolic compounds from Coriandrum sativum L. and Amaranthus hybridus L. by microwave technology. In Polyphenols in plants, ed. R.R. Watson, 185–90, 2nd ed. Cambridge: Academic Press.
  • Mustafa, G., M. T. Zahid, S. Ali, S. Z. Abbas, and M. Rafatullah. 2021. Biodegradation and discoloration of disperse blue-284 textile dye by Klebsiella pneumoniae GM-04 bacterial isolate. Journal of King Saud University – Science 33 (4):101442–8. doi: 10.1016/j.jksus.2021.101442.
  • Nazir, M. A., T. Najam, M. S. Bashir, M. S. Javed, M. A. Bashir, M. Imran, U. Azhar, S. S. A. Shah, and A. u Rehman. 2022. Kinetics, isothermal and mechanistic insight into the adsorption of eosin yellow and malachite green from water via tri-metallic layered double hydroxide nanosheets. Korean Journal of Chemical Engineering 39 (1):216–26. doi: 10.1007/s11814-021-0892-3.
  • Neifar, M., H. Chouchane, M. Mahjoubi, A. Jaouani, and A. Cherif. 2016. Pseudomonas extremorientalis BU118: A new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech 6 (1):9. doi: 10.1007/s13205-016-0425-7.
  • Ojediran, J. O., A. O. Dada, S. O. Aniyi, R. O. David, and A. D. Adewumi. 2021. Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using Acid Functionalized Maize Cob (AFMC). Scientific Reports 11 (1):15. doi: 10.1038/s41598-021-00993-1.
  • Parshetti, G., S. Kalme, G. Saratale, and S. Govindwar. 2006. Biodegradation of Malachite Green by Kocuria rosea MTCC 1532. Acta Chimica Slovenica 53:492–8.
  • Patil, S. N., B. A. Aglave, A. V. Pethkar, and V. B. Gaikwad. 2012. Stenotrophomonas koreensis a novel biosurfactant producer for abatement of heavy metals from the environment. African Journal of Microbiology Research 6:5173–8.
  • Pinheiro, L. R. S., D. G. Gradíssimo, L. P. Xavier, and A. V. Santos. 2022. Degradation of Azo Dyes: Bacterial potential for bioremediation. Sustainability 14 (3):1510–32. doi: 10.3390/su14031510.
  • Pipoyan, D., S. Stepanyan, M. Beglaryan, S. Stepanyan, and A. Mantovani. 2020. Health risk assessment of toxicologically relevant residues in emerging countries: A pilot study on Malachite Green residues in farmed freshwater fish of Armenia. Food and Chemical Toxicology 143:111526–31. doi: 10.1016/j.fct.2020.111526.
  • Qiao, M., K. Wei, J. Ding, Z. Liu, K.-Q. Zhang, and X. Huang. 2011. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1. Journal of Molecular Microbiology and Biotechnology 20 (4):220–7.
  • Ridha, M. J., Hussein, S. I. Alismaeel, Z. T. Atiya, M. A., and Aziz, G. M. 2020. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alexandria Engineering Journal 59 (5):3551–63. doi: 10.1016/j.aej.2020.06.001.
  • Routoula, E, and S. V. Patwardhan. 2020. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environmental Science & Technology 54 (2):647–64. doi: 10.1021/acs.est.9b03737.
  • Ryan, R. P., S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M. B. Avison, G. Berg, D. van der Lelie, and J. M. Dow. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews. Microbiology 7 (7):514–25. doi: 10.1038/nrmicro2163.
  • Said, K. A. M., and M. A. M. Amin. 2015. Overview on the response surface methodology (RSM) in extraction processes. Journal of Applied Science & Process Engineering 2:8–17.
  • Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 (4):406–25. doi: 10.1093/oxfordjournals.molbev.a040454.
  • Salehi, K., A. Bahmani, B. Shahmoradi, M. A. Pordel, S. Kohzadi, Y. Gong, H. Guo, H. P. Shivaraju, R. Rezaee, R. R. Pawar, et al. 2017. Response surface methodology (RSM) optimization approach for degradation of Direct Blue 71 dye using CuO–ZnO nanocomposite. International Journal of Environmental Science and Technology 14 (10):2067–76. doi: 10.1007/s13762-017-1308-0.
  • Sánchez, M. B. 2015. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Frontiers in Microbiology 6:658–64. doi: 10.3389/fmicb.2015.00658.
  • Sari, I. P., and K. Simarani. 2019. Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: Biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorption Science & Technology 37 (5–6):492–508. doi: 10.1177/0263617419848897.
  • Shah, P. D., S. R. Dave, and M. S. Rao. 2012. Enzymatic degradation of textile dye Reactive Orange 13 by newly isolated bacterial strain Alcaligenes faecalis PMS-1. International Biodeterioration & Biodegradation 69:41–50. doi: 10.1016/j.ibiod.2012.01.002.
  • Shanmugam, S., P. Ulaganathan, K. Swaminathan, S. Sadhasivam, and Y. R. Wu. 2017. Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: Degradation pathway and product analysis. International Biodeterioration & Biodegradation 125:258–68. doi: 10.1016/j.ibiod.2017.08.001.
  • Sihag, S., H. Pathak, and D. P. Jaroli. 2014. Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. International Journal of Pure and Applied Bioscience 2:185–202.
  • Sinha, R., and R. Jindal. 2020. Elucidation of malachite green induced behavioural, biochemical, and histo-architectural defects in Cyprinus carpio, as piscine model. Environmental and Sustainability Indicators 8:100055–64. doi: 10.1016/j.indic.2020.100055.
  • Song, J., G. Han, Y. Wang, X. Jiang, D. Zhao, M. Li, Z. Yang, Q. Ma, R. E. Parales, Z. Ruan, et al. 2020. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Scientific Reports 10 (1):11. doi: 10.1038/s41598-020-61442-z.
  • Suckstorff, I, and G. Berg. 2003. Evidence for dose‐dependent effects on plant growth by Stenotrophomonas strains from different origins. Journal of Applied Microbiology 95 (4):656–63. doi: 10.1046/j.1365-2672.2003.02021.x.
  • Sulistyaningsih, T., S. Ariyani, and W. Astuti. 2021. Preparation of magnetite coated humic acid (Fe3O4-HA) as malachite green dye adsorbent. Journal of Physics: Conference Series. IOP Publishing 1918:032005–10. doi: 10.1088/1742-6596/1918/3/032005.
  • Sutar, S. S., P. J. Patil, A. S. Tamboli, D. N. Patil, O. A. Apine, and J. P. Jadhav. 2019. Biodegradation and detoxification of malachite green by a newly isolated bioluminescent bacterium Photobacterium leiognathi strain MS under RSM optimized culture conditions. Biocatalysis and Agricultural Biotechnology 20:101183. doi: 10.1016/j.bcab.2019.101183.
  • Tachibana, S., N. Kuba, F. Kawai, J. A. Duine, and M. Yasuda. 2003. Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiology Letters 218 (2):345–9. doi: 10.1111/j.1574-6968.2003.tb11540.x.
  • Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America 101 (30):11030–5. doi: 10.1073/pnas.0404206101.
  • Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12):2725–9. doi: 10.1093/molbev/mst197.
  • Teitzel, G. M, and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology 69 (4):2313–20. doi: 10.1128/AEM.69.4.2313-2320.2003.
  • Teymori, M., H. Khorsandi, A. A. Aghapour, S. J. Jafari, and R. Maleki. 2020. Electro-Fenton method for the removal of Malachite Green: Effect of operational parameters. Applied Water Science 10 (1):14. doi: 10.1007/s13201-019-1123-5.
  • Vanoye, L., A. Favre-Réguillon, A. Aloui, R. Philippe, and C. de Bellefon. 2013. Insights in the aerobic oxidation of aldehydes. RSC Advances 3 (41):18931–7. doi: 10.1039/c3ra42385a.
  • Venil, C. K., P. Velmurugan, L. Dufossé, P. Renuka Devi, and A. Veera Ravi. 2020. Fungal pigments: Potential coloring compounds for wide ranging applications in textile dyeing. Journal of Fungi 6 (2):68–90. doi: 10.3390/jof6020068.
  • Vignesh, A., K. Manigundan, J. Santhoshkumar, T. Shanmugasundaram, V. Gopikrishnan, M. Radhakrishnan, J. Joseph, P. M. Ayyasamy, G. D. Kumar, R. Meganathan, et al. 2020. Microbial degradation, spectral analysis and toxicological assessment of malachite green by Streptomyces chrestomyceticus S20. Bioprocess and Biosystems Engineering 43 (8):1457–68.
  • Vijayalakshmidevi, S. R, and K. Muthukumar. 2014. Biodegradation of malachite green by Ochrobactrum sp. World Journal of Microbiology & Biotechnology 30 (2):429–37. doi: 10.1007/s11274-013-1452-8.
  • Wanyonyi, W. C., J. M. Onyari, P. M. Shiundu, and F. J. Mulaa. 2017. Biodegradation and detoxification of malachite green dye using novel enzymes from Bacillus cereus strain KM201428: Kinetic and metabolite analysis. Energy Procedia. 119:38–51. doi: 10.1016/j.egypro.2017.07.044.
  • Wang, J. A., F. Gao, Z. Liu, M. Qiao, X. Niu, K. Q. Zhang, and X. Huang. 2012. Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2. PLoS One 7 (12):e51808. doi: 10.1371/journal.pone.0051808.
  • Yang, H. C., W. T. Im, M. S. Kang, D. Y. Shin, and S. T. Lee. 2006. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. International Journal of Systematic and Evolutionary Microbiology 56 (Pt 1):81–4. doi: 10.1099/ijs.0.63826-0.
  • Yang, X., J. Zheng, Y. Lu, and R. Jia. 2016. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environmental Science and Pollution Research International 23 (10):9585–97. doi: 10.1007/s11356-016-6164-9.
  • Yong, L., G. Zhanqi, J. Yuefei, H. Xiaobin, S. Cheng, Y. Shaogui, W. Lianhong, W. Qingeng, and F. Die. 2015. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways. Journal of Hazardous Materials 285:127–36. doi: 10.1016/j.jhazmat.2014.11.041.
  • Younas, F., A. Mustafa, Z. U. R. Farooqi, X. Wang, S. Younas, W. Mohy-Ud-Din, M. Ashir Hameed, M. Mohsin Abrar, A. A. Maitlo, S. Noreen, et al. 2021. Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water 13 (2):215–39. doi: 10.3390/w13020215.
  • Zhan, X., C. Yan, Y. Zhang, G. Rinke, G. Rabsch, M. Klumpp, A. I. Schäfer, and R. Dittmeyer. 2020. Investigation of the reaction kinetics of photocatalytic pollutant degradation under defined conditions with inkjet-printed TiO2 films–from batch to a novel continuous-flow microreactor. Reaction Chemistry & Engineering 5 (9):1658–70. doi: 10.1039/D0RE00238K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.